RabbitMQ、Kafka、RocketMQ的优劣势
今天我们一起来探讨:
- 全量的消息队列究竟有哪些?
- Kafka、RocketMQ、RabbitMQ的优劣势比较
- 以及消息队列的选型
最全MQ消息队列有哪些
那么目前在业界有哪些比较知名的消息引擎呢?如下图所示

这里面几乎完全列举了当下比较知名的消息引擎,包括:
- ZeroMQ
- 推特的Distributedlog
- ActiveMQ:Apache旗下的老牌消息引擎
- RabbitMQ、Kafka:AMQP的默认实现。
- RocketMQ
- Artemis:Apache的ActiveMQ下的子项目
- Apollo:同样为Apache的ActiveMQ的子项目的号称下一代消息引擎
- 商业化的消息引擎IronMQ
- 以及实现了JMS(Java Message Service)标准的OpenMQ。
MQ消息队列的技术应用

1.解耦
解耦是消息队列要解决的最本质问题。
2.最终一致性
最终一致性指的是两个系统的状态保持一致,要么都成功,要么都失败。
最终一致性不是消息队列的必备特性,但确实可以依靠消息队列来做最终一致性的事情。
2.广播
消息队列的基本功能之一是进行广播。
有了消息队列,我们只需要关心消息是否送达了队列,至于谁希望订阅,是下游的事情,无疑极大地减少了开发和联调的工作量。
3.错峰与流控
典型的使用场景就是秒杀业务用于流量削峰场景。
由于篇幅的关系,本文重点介绍消息队列比较,详细应用场景请参考:什么是流量削峰?如何解决秒杀业务的削峰场景
Kafka、RocketMQ、RabbitMQ比较
1.ActiveMQ
优点
- 单机吞吐量:万级
- topic数量都吞吐量的影响:
- 时效性:ms级
- 可用性:高,基于主从架构实现高可用性
- 消息可靠性:有较低的概率丢失数据
- 功能支持:MQ领域的功能极其完备
缺点:
官方社区现在对ActiveMQ 5.x维护越来越少,较少在大规模吞吐的场景中使用。
2.Kafka
号称大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开Kafka,这款为大数据而生的消息中间件,以其百万级TPS的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥着举足轻重的作用。
Apache Kafka它最初由LinkedIn公司基于独特的设计实现为一个分布式的提交日志系统( a distributed commit log),之后成为Apache项目的一部分。
目前已经被LinkedIn,Uber, Twitter, Netflix等大公司所采纳。
优点
- 性能卓越,单机写入TPS约在百万条/秒,最大的优点,就是吞吐量高。
- 时效性:ms级
- 可用性:非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
- 消费者采用Pull方式获取消息, 消息有序, 通过控制能够保证所有消息被消费且仅被消费一次;
- 有优秀的第三方Kafka Web管理界面Kafka-Manager;
- 在日志领域比较成熟,被多家公司和多个开源项目使用;
- 功能支持:功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用
缺点:
- Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长
- 使用短轮询方式,实时性取决于轮询间隔时间;
- 消费失败不支持重试;
- 支持消息顺序,但是一台代理宕机后,就会产生消息乱序;
- 社区更新较慢;
3.RabbitMQ
RabbitMQ 2007年发布,是一个在AMQP(高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。
RabbitMQ优点:
- 由于erlang语言的特性,mq 性能较好,高并发;
- 吞吐量到万级,MQ功能比较完备
- 健壮、稳定、易用、跨平台、支持多种语言、文档齐全;
- 开源提供的管理界面非常棒,用起来很好用
- 社区活跃度高;
RabbitMQ缺点:
- erlang开发,很难去看懂源码,基本职能依赖于开源社区的快速维护和修复bug,不利于做二次开发和维护。
- RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。
- 需要学习比较复杂的接口和协议,学习和维护成本较高。
4.RocketMQ
RocketMQ出自 阿里公司的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进。
RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。
RocketMQ优点:
- 单机吞吐量:十万级
- 可用性:非常高,分布式架构
- 消息可靠性:经过参数优化配置,消息可以做到0丢失
- 功能支持:MQ功能较为完善,还是分布式的,扩展性好
- 支持10亿级别的消息堆积,不会因为堆积导致性能下降
- 源码是java,我们可以自己阅读源码,定制自己公司的MQ,可以掌控
RocketMQ缺点:
- 支持的客户端语言不多,目前是java及c++,其中c++不成熟;
- 社区活跃度一般
- 没有在 mq 核心中去实现JMS等接口,有些系统要迁移需要修改大量代码
消息队列选择建议
1.Kafka
Kafka主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输,适合产生大量数据的互联网服务的数据收集业务。
大型公司建议可以选用,如果有日志采集功能,肯定是首选kafka了。
2.RocketMQ
天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。
RoketMQ在稳定性上可能更值得信赖,这些业务场景在阿里双11已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择RocketMQ。
3.RabbitMQ
RabbitMQ :结合erlang语言本身的并发优势,性能较好,社区活跃度也比较高,但是不利于做二次开发和维护。不过,RabbitMQ的社区十分活跃,可以解决开发过程中遇到的bug。
如果你的数据量没有那么大,小公司优先选择功能比较完备的RabbitMQ。
RabbitMQ、Kafka、RocketMQ的优劣势的更多相关文章
- 消息队列比较-rabbitmq/kafka/rocketmq/ONS
主要是比较这几种队列中间件: rabbitmq kafka rocketmq ONS 分以下几个维度来比较 高并发 毫无疑问KAFKA发消息的速度是最快的 ROCKETMQ/ONS次之 rabbitm ...
- 【消息队列】从各方面比较下kafka、activemq、rabbitmq、rocketmq之间的区别
一.单机吞吐量ActiveMQ:万级,吞吐量比RocketMQ和Kafka要低了一个数量级RabbitMQ:万级,吞吐量比RocketMQ和Kafka要低了一个数量级RocketMQ:10万级,Roc ...
- RabbitMQ,RocketMQ,Kafka 几种消息队列的对比
常用的几款消息队列的对比 前言 RabbitMQ 优点 缺点 RocketMQ 优点 缺点 Kafka 优点 缺点 如何选择合适的消息队列 参考 常用的几款消息队列的对比 前言 消息队列的作用: 1. ...
- ActiveMQ、RabbitMQ、RocketMQ、Kafka有什么优点和缺点
ActiveMQ 单机吞吐量:万级 topic数量都吞吐量的影响: 时效性:ms级 可用性:高,基于主从架构实现高可用性 消息可靠性:有较低的概率丢失数据 功能支持:MQ领域的功能极其完备 总结: 非 ...
- (一)RabbitMQ消息队列-RabbitMQ的优劣势及产生背景
原文:(一)RabbitMQ消息队列-RabbitMQ的优劣势及产生背景 本篇并没有直接讲到技术,例如没有先写个Helloword.我想在选择了解或者学习一门技术之前先要明白为什么要现在这个技术而不是 ...
- 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么优点和缺点?
面试题 为什么使用消息队列? 消息队列有什么优点和缺点? Kafka.ActiveMQ.RabbitMQ.RocketMQ 都有什么区别,以及适合哪些场景? 面试官心理分析 其实面试官主要是想看看: ...
- Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,消息队列有什么优点和缺点
面试题 为什么使用消息队列? 消息队列有什么优点和缺点? Kafka.ActiveMQ.RabbitMQ.RocketMQ 都有什么区别,以及适合哪些场景? 面试官心理分析 其实面试官主要是想看看: ...
- Kafka、RabbitMQ、RocketMQ消息中间件的对比 —— 消息发送性能-转自阿里中间件
引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦.现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注. ...
- Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理
为什么使用消息队列 其实就是问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么? 面试官问你这个问题,期望的一个回答是说,你们公司有个什么业务场景,这个业务 ...
随机推荐
- python 字典创建
- QT自定义窗口
qt 中允许自定义窗口控件,使之满足特殊要求, (1)可以修改其显示,自行绘制 (2)可以动态显示 (3)可以添加事件,支持鼠标和键盘操作 自定义控件可以直接在QtDesigner里使用,可以直接加到 ...
- 荣获“5G MEC优秀商用案例奖”,阿里云边缘计算发力新零售
4月24日,在中国联通合作伙伴大会的 “5G MEC(Mobile Edge Computing,移动边缘计算)边缘云赋能行业数字化转型”分论坛上,阿里云“基于5G边缘计算的新零售应用案例”荣获201 ...
- 洛谷P2455 [SDOI2006]线性方程组
高斯消元模板 要求输出解的情况(无穷解/无解) 1. 之前写的丑陋代码 #include <iostream> #include <cstdio> #include <c ...
- Libev源码分析07:Linux下的eventfd简介
#include <sys/eventfd.h> int eventfd(unsigned int initval, int flags); eventfd创建一个eventfd对象,该对 ...
- Helm V3 新版本发布
Helm v3.0.0 Alpha 1 is coming! Helm 作为 Kubernetes 体系的包管理工具,已经逐渐成为了事实上的应用分发标准.根据 2018 年 CNCF 的一项云原生用户 ...
- 最优化方法系列:Adam+SGD-AMSGrad 重点
https://blog.csdn.net/wishchin/article/details/80567558 自动调参的Adam方法已经非常给力了,不过这主要流行于工程界,在大多数科学实验室中,模型 ...
- oracle 需要当心的WHERE子句
某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子. 在下面的例子里, ‘!=’ 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. 不使用索引: ...
- TSLint-Angular 配置
代码风格和语义的检查工具,帮助规范 TS 和 Angular 代码书写: 安装: => cnpm install // 安装相关依赖 全局安装 cnpm install -g tslint ty ...
- Vue-axios 在vue cli中封装
common/post.js import axios from 'axios' // 引入axios import qs from 'qs' // 引入qs axios.defaults.baseU ...