「BZOJ2194」快速傅立叶之二

2015年4月29日3,8300

Description

请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。

Input

       第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。

Output

输出N行,每行一个整数,第i行输出C[i-1]。

Sample Input

5
3 1
2 4
1 1
2 4
1 4

Sample Output

24
12
10
6
1

思路分析 :

  初看题目所要求的式子,很像卷积, f(x) * g(x) = sigma(f(x) g(t-x))  那么我们只要将 b数组变换一下即可, 另 d[i] = b[n-i-1] , 则a[i]*b[k-i] = a[i]*b[n-1-(n+k-i-1)] = a[i]*d[n+k-1-i] ( k-1 < i < n) 这不就是一个标准的卷积了吗,fft 即可

代码示例 :(未测试)

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 3e5+5;
const double pi = acos(-1.0); int n;
struct Complex{
double x, y;
Complex (double _x=0, double _y=0):x(_x), y(_y){}
Complex operator -(const Complex &b)const{
return Complex(x-b.x, y-b.y);
}
Complex operator +(const Complex &b)const{
return Complex(x+b.x, y+b.y);
}
Complex operator *(const Complex &b)const{
return Complex(x*b.x-y*b.y, x*b.y+y*b.x);
}
};
Complex x1[maxn], x2[maxn];
void change(Complex y[], int len){
for(int i = 1, j = len/2; i < len-1; i++){
if (i < j) swap(y[i], y[j]);
int k = len/2;
while(j >= k){
j -= k;
k /= 2;
}
if (j < k) j += k;
}
} void fft(Complex y[], int len, int on){
change(y, len);
for(int h = 2; h <= len; h <<= 1){
Complex wn(cos(-on*2*pi/h), sin(-on*2*pi/h));
for(int j = 0; j < len; j += h){
Complex w(1, 0);
for(int k = j; k < j+h/2; k++){
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if (on == -1){
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} int main () { cin >> n;
for(int i = 0; i < n; i++) scanf("%lf%lf", &x1[i].x, &x2[n-i-1].x);
int len = 1;
while(len < 2*n) len <<= 1; fft(x1, len, 1); fft(x2, len, 1);
for(int i = 0; i < len; i++) x1[i] = x1[i]*x2[i];
fft(x1, len, -1); for(int i = n-1; i < 2*n-1; i++){
int x = (int)(x1[i].x+0.5);
printf("%d\n", x);
}
return 0;
}

简单的 FFT 变形 - BZOJ 2194的更多相关文章

  1. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  2. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  3. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  4. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  5. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  6. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  7. BZOJ 2194 FFT

    思路: 题目中给的是差值一定的 那么就把b数组倒一下 不就变成 i+j=k(k为定值的了嘛) 嗯 然后搞个FFT //By SiriusRen #include <cstdio> #inc ...

  8. 实现了一个简单的cage变形器

    今天实现了一个简单变形器,可以用一个网格的形状影响另一个网格的形状. 如图,蓝色网格的形状被灰色网格操控. 当前的算法非常简单,就是计算蓝色网格每个点到灰色网格每个点的距离,以距离x次方的倒数作为权重 ...

  9. 利用GDI+处理图像,包括图像的的裁剪显示、转置、镜像、简单旋转、变形等。

    一.图像的裁剪显示:有时程序需要显示图像的一部分而不是全部.实例代码如下: CDC* pDC = GetDC(); Graphics graph(pDC->GetSafeHdc()); Imag ...

随机推荐

  1. [Atom 编辑器 ] Packages

    Atom包      https://atom.io/packages 常用包整理: atom-chinese-menu   中文插件 atom-ternjs   对 es5,es6的语法支持 ato ...

  2. The Preliminary Contest for ICPC Asia Nanjing 2019ICPC南京网络赛

    B.super_log (欧拉降幂) •题意 定一个一个运算log*,迭代表达式为 给定一个a,b计算直到迭代结果>=b时,最小的x,输出对m取余后的值 •思路 $log*_{a}(1)=1+l ...

  3. H3C进入目录---用户视图

    进入logfile文件目录 <H3C>cd logfile/        //进入目录 <H3C>pwd             //显示当前所属的目录 cf:/logfil ...

  4. ZR9.8普转提

    ZR9.8普转提 A,B 打过的CF原题,不管了 C 确认过眼神,是我不会写的DP, 发现这个题目要求的过程类似与一个所有括号都不一样的括号匹配的过程 但是限制条件非常多,有点无从下手的感觉 我们设\ ...

  5. vue 数据监听原理

    Vue.prototype.listenDatas = function(){ for(var attr in this.$data){ this.listenData(this,attr,this. ...

  6. 关于instanface的问题

    nstanceof关键字来判断某个对象是否属于某种数据类型.报错  代码如下 package cn.lijun.demo3; import cn.lijun.demo.Person;import cn ...

  7. java 嵌入式数据库H2

    H2作为一个嵌入型的数据库,它最大的好处就是可以嵌入到我们的Web应用中,和我们的Web应用绑定在一起,成为我们Web应用的一部分.下面来演示一下如何将H2数据库嵌入到我们的Web应用中. 一.搭建测 ...

  8. Oracle 11g R2 for Win10(64位)的安装注意点

    一般我们在win10系统安装oracle11g或者10g及更低版本的oracle客户端时,都是无法安装,一般安装的时候会闪退.这是什么原因呢?其实很简单,win10出的时间比较晚,在oracle11g ...

  9. HBase 原理

    遗留问题: 数据在更新时首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的 ...

  10. kubernetes实战(三十):CentOS 8 二进制 高可用 安装 k8s 1.17.x

    1. 基本说明 本文章将演示CentOS 8二进制方式安装高可用k8s 1.17.x,相对于其他版本,二进制安装方式并无太大区别. 2. 基本环境配置 主机信息 192.168.1.19 k8s-ma ...