gensim的word2vec如何得出词向量(python)
首先需要具备gensim包,然后需要一个语料库用来训练,这里用到的是skip-gram或CBOW方法,具体细节可以去查查相关资料,这两种方法大致上就是把意思相近的词映射到词空间中相近的位置。
语料库test8下载地址:
http://mattmahoney.net/dc/text8.zip
这个语料库是从http://blog.csdn.net/m0_37681914/article/details/73861441这篇文章中找到的。
检查语料是否需要做预处理:
将数据下载好了解压出来,在做词向量之前我们需要了解数据的存储结构,判断它是否满足gensim包里word2vec函数对输入数据的形式要求。word2vec函数的输入最好是一整篇文字,不含标点符号以及换行符。那么我们应该检查test8数据是否符合。然而双击打开test8是行不通的,因为文件过大。那么就需要我们用程序打开它。代码如下:
with open('/text8','r',encoding='utf-8') as file:
for line in file.readlines():
print(line)
程序会返回警告,内存不够,打印不出来。明显是因为有一行内容太多导致的。可以进行如下验证:
with open('/text8','r',encoding='utf-8') as file:
for line in file.readlines():
print(len(line))
输出只有一个值,表示数据只有一行,且显示这一行有100000000个字符长度。由于文件内数据结构一致,那么我们没有必要将数据全部输出来看,只需要输出一部分就知道它的数据结构,那么修改代码如下:
a = 0
b = 0
with open('/text8','r',encoding='utf-8') as file:
line = file.read()
for char in line:
b+=1
print(char,end='')
if b-a == 100:
a = b
print('\n')
if a == 5000:
break
我们输出前5000个字符来看看,并且每100个字符换一行。
这里只是开头一部分,可以看到数据完全没有标点符号,且之前验证过所有数据都是在同一行,表示没有换行符。那么我们无需对数据进行预处理。接下来是数据处理部分。
数据处理部分:
from gensim.models import word2vec
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
sentences = word2vec.Text8Corpus('/text8')
model = word2vec.Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4)
model.save('/text82.model')
print(model['man'])
那么
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
这一行表示我们的程序会输出日志信息,形式(format)为日期(asctime):信息级别(levelname):日志信息(message),信息级别为正常信息(logging.INFO)。关于logging的知识,大家可以去自行学习。https://www.cnblogs.com/bjdxy/archive/2013/04/12/3016820.html点击打开链接
上图就是输出的日志信息。实际工作中,我们也可以不加这个日志,但这么做的前提是我们确定程序一定正确,不会出错,因为一旦出错我们就需要根据日志信息来推断错误发生的可能。
将语料库保存在sentence中
sentences = word2vec.Text8Corpus('/text8')
生成词向量空间模型
model = word2vec.Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4)
这里讲下参数含义:
class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025,window=5, min_count=5,max_vocab_size=None, sample=0.001,seed=1, workers=3,min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1,hashfxn=<built-in function hash>,iter=5,null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000)
参数:
1.sentences:可以是一个List,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建。
2.sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
3.size:是指输出的词的向量维数,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
4.window:为训练的窗口大小,8表示每个词考虑前8个词与后8个词(实际代码中还有一个随机选窗口的过程,窗口大小<=5),默认值为5。
5.alpha: 是学习速率
6.seed:用于随机数发生器。与初始化词向量有关。
7.min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。
8.max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
9.sample: 表示 采样的阈值,如果一个词在训练样本中出现的频率越大,那么就越会被采样。默认为1e-3,范围是(0,1e-5)
10.workers:参数控制训练的并行数。
11.hs: 是否使用HS方法,0表示不使用,1表示使用 。默认为0
12.negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
13.cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(default)则采用均值。只有使用CBOW的时候才起作用。
14.hashfxn: hash函数来初始化权重。默认使用python的hash函数
15.iter: 迭代次数,默认为5。
16.trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数。
17.sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
18.batch_words:每一批的传递给线程的单词的数量,默认为10000
这里再把生成的空间模型保存下来,以便下次使用。
model.save('/text8.model')
下次使用就不在需要加载语料库和生成模型了。只需要:
'''
sentences = word2vec.Text8Corpus('/text8')
model = word2vec.Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4)
model.save('/text8.model')
'''
model = word2vec.Word2Vec.load('/text8.model')
最后是查看某个词的词向量:
print(model['man'])
当然model函数还可以做更多的事情,比如查看两个词的相似度等等,想知道的请自行百度
---------------------
作者:lwn556u5ut
来源:CSDN
原文:https://blog.csdn.net/weixin_40292043/article/details/79571346
版权声明:本文为博主原创文章,转载请附上博文链接!
gensim的word2vec如何得出词向量(python)的更多相关文章
- 文本分类实战(一)—— word2vec预训练词向量
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- word2vec 构建中文词向量
词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐.良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文 ...
- 使用word2vec训练中文词向量
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词 ...
- gensim中word2vec和其他一些向量的使用
直接上代码吧,word2vec # test from gensim.models.word2vec import Word2Vec txt_file = open('data.txt') sente ...
- word2vec预训练词向量
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算 ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- 文本分布式表示(二):用tensorflow和word2vec训练词向量
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...
- 基于word2vec训练词向量(二)
转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hi ...
- 文本情感分析(二):基于word2vec、glove和fasttext词向量的文本表示
上一篇博客用词袋模型,包括词频矩阵.Tf-Idf矩阵.LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题. 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用 ...
随机推荐
- 2019.9.28 csp-s模拟测试54 反思总结
咕咕咕的冲动如此强烈x T1x: 看完题目想了想,感觉把gcd不为1的强行放在一组,看作一个连通块,最后考虑连通块之间的组合方式就可以了. 然后维护这个连通块可以写并查集可以连边跑dfs怎么着都行… ...
- 洛谷P1508 Likecloud-吃、吃、吃 [2017年4月计划 动态规划10]
P1508 Likecloud-吃.吃.吃 题目背景 问世间,青春期为何物? 答曰:“甲亢,甲亢,再甲亢:挨饿,挨饿,再挨饿!” 题目描述 正处在某一特定时期之中的李大水牛由于消化系统比较发达,最近一 ...
- js对象属性方法大总结
数组(Array):系列元素的有序集合: 详细演示请看:[js入门系列演示·数组 ] http://www.cnblogs.com/thcjp/archive/2006/08/04/467761.ht ...
- Liferay 7.1发布啦
下载地址: https://cdn.lfrs.sl/releases.liferay.com/portal/7.1.0-m1/liferay-ce-portal-tomcat-7.1-m1-20180 ...
- webpack学习之——Output
配置 output 选项可以控制 webpack 如何向硬盘写入编译文件.注意,即使可以存在多个入口起点,但只指定一个输出配置. 1. 用法 在 webpack 中配置 output 属性的最低要求是 ...
- 常用css3属性
总结一下在工作用常用到的属性设置 1.设置文本的可选择性 -webkit-user-select:none/text 2.设置背景的绘制区域 background-clip:border-box/pa ...
- HTTP请求封装Java工具类
装载自:http://www.open-open.com/lib/view/open1384844838743.html package com.wiker; import java.io.Buffe ...
- 虚幻UE4的后处理特效介绍 http://www.52vr.com/thread-31215-1-1.html
转载 虚幻UE4提供了后处理特效的功能,可以实现景深,光溢出,色调调整,饱和度等等.要使用虚幻4的后处理,就一定要用到PostProcessVolumn,这是一种特殊的体积,可以放置在场景中的任何位置 ...
- @codeforces - 1276F@ Asterisk Substrings
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个包含 n 个小写字母的字符串 s,用 s 生成 n 个串 ...
- 【JZOJ4860】【NOIP2016提高A组集训第7场11.4】分解数
题目描述 Dpstr学习了动态规划的技巧以后,对数的分解问题十分感兴趣. Dpstr用此过程将一个正整数x分解成若干个数的乘积:一开始令集合A中只有一个元素x,每次分解时从A中取一个元素a并找出两个大 ...