PAT甲级——A1014 Waiting in Line
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:
- The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (st one will have to wait in a line behind the yellow line.
- Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
- Customeri will take Ti minutes to have his/her transaction processed.
- The first N customers are assumed to be served at 8:00am.
Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.
For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer1 is served at window1while customer2 is served at window2. Customer3 will wait in front of window1 and customer4 will wait in front of window2. Customer5 will wait behind the yellow line.
At 08:01, customer1 is done and customer5 enters the line in front of window1 since that line seems shorter now. Customer2 will leave at 08:02, customer4 at 08:06, customer3 at 08:07, and finally customer5 at 08:10.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤, number of windows), M (≤, the maximum capacity of each line inside the yellow line), K (≤, number of customers), and Q (≤, number of customer queries).
The next line contains K positive integers, which are the processing time of the Kcustomers.
The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.
Output Specification:
For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM
where HH
is in [08, 17] and MM
is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry
instead.
Sample Input:
2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
Sample Output:
08:07
08:06
08:10
17:00
Sorry
题的大意:
N个窗口,每个窗口线内排队M个人,其他人在线外等候
哪个窗口有空缺,那么就上那个窗口去排队
当有多个窗口空缺,则选择小号排队
问每个人从早上8.00到他办完业务的具体时间
有个点得注意一下,就是当有个人排队在16:59开始办业务,
就算他要办1000分钟的业务,他也是算能办上业务的,不应输出sorry
#include<iostream>
#include <vector>
#include <queue>
using namespace std; int N, M, K, Q; int main()
{
cin >> N >> M >> K >> Q;
vector<queue<int>>windows(N);//N个窗口
vector<int>endTime(K + );
vector<bool>Sorry(K + , false);//若前面那个人的业务办理时间超过下班时间,那么你是排不上的
int a, time;
for (int i = ; i < K; ++i)
{
cin >> a;
if (i < N * M)//先将窗口的位子按序排满,存的是该人完成业务的时间
{
if (windows[i%N].size() > )
{
time = windows[i%N].back() + a;
windows[i%N].push(time);
Sorry[i + ] = windows[i%N].back() >= ? true : false;
}
else
{
time = a;
windows[i%N].push(a);
}
}
else//线外的人选择窗口排队
{
int minTime = windows[].front(), index = ;
for (int j = ; j < N; ++j)//找到最先出现空位的窗口,然后去选择该窗口排队
{
if (minTime > windows[j].front())
{
index = j;
minTime = windows[j].front();
}
}
Sorry[i + ] = windows[index].back() >= ? true : false;
time = windows[index].back() + a;
windows[index].pop();//排完对队就离开
windows[index].push(time);//排队
}
endTime[i + ] = time;
} for (int i = ; i < Q; ++i)
{
cin >> a;
time = endTime[a];
if (Sorry[a])
printf("Sorry\n");
else
printf("%02d:%02d\n", + time / , time % );
}
return ;
}
PAT甲级——A1014 Waiting in Line的更多相关文章
- PAT甲级1014. Waiting in Line
PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...
- PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)
1014 Waiting in Line (30 分) Suppose a bank has N windows open for service. There is a yellow line ...
- PAT A1014 Waiting in Line (30 分)——队列
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- A1014. Waiting in Line
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- PAT A 1014. Waiting in Line (30)【队列模拟】
题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...
- PAT甲级题解分类byZlc
专题一 字符串处理 A1001 Format(20) #include<cstdio> int main () { ]; int a,b,sum; scanf ("%d %d& ...
- PAT Waiting in Line[转载]
//转自:https://blog.csdn.net/apie_czx/article/details/45537627 1014 Waiting in Line (30)(30 分)Suppose ...
- PAT 1014 Waiting in Line (模拟)
1014. Waiting in Line (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Suppo ...
- PAT甲级题解(慢慢刷中)
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6102219.html特别不喜欢那些随便转载别人的原创文章又不给 ...
随机推荐
- "一个实用的却被忽略的命名空间:Microsoft.VisualBasic":
当你看到这个命名空间的时候,别因为是vb的东西就匆忙关掉网页,那将会是您的损失,此命名空间中的资源最初目的是为了简化vb.net开发而创建的,所以microsoft.visualbasic并不 ...
- iOS开发之SceneKit框架--SCNAction.h
1.SCNAction简介 主要负责节点SCNNode的属性,实现node的渐变.移动.出现.消失.实现动画等. 2.相关API 节点的移动(earthNode的初始坐标(5,0,0)) //从当前位 ...
- linux环境变量设置错误后的恢复方法(转)
原文: http://blog.csdn.net/hoholook/article/details/2793447 linux环境变量设置错误后的恢复方法 中国自学编程网收集整理 发布日期:2008 ...
- npm安装vuex及防止页面刷新数据丢失
npm install vuex 在项目scr目录下新建store文件夹,在store文件夹下新建index.js文件. import Vue from 'vue'; import Vuex from ...
- 第四周——重新clone项目后maven问题
重新clone项目后,一直报错,"类重复..." clean后install也无效果. 原因是idea在重启项目时会更改maven为默认的idea自带的maven配置,要重新设置
- 第三周课堂笔记4thand5th
循环打印 #计算字典中的键值对的个数 print(len(a)) #获取字典中键的列表 print(a.keys()) #获取字典中值的列表 print(a.values()) #获取字典中键值对的个 ...
- <scrapy爬虫>爬取quotes.toscrape.com
1.创建scrapy项目 dos窗口输入: scrapy startproject quote cd quote 2.编写item.py文件(相当于编写模板,需要爬取的数据在这里定义) import ...
- 2019牛客国庆集训派对day5
2019牛客国庆集训派对day5 I.Strange Prime 题意 \(P=1e10+19\),求\(\sum x[i] mod P = 0\)的方案数,其中\(0 \leq x[i] < ...
- easyui combotree的使用示例
一.View: 1.定义输入控件 <input id="ParentId" name="ParentId"> 2.绑定combotree $('#P ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...