洛谷 P2725 邮票 Stamps 解题报告
P2725 邮票 Stamps
题目背景
给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票。计算从 1 到 M 的最大连续可贴出的邮资。
题目描述
例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票。很容易贴出 1 到 5 分的邮资(用 1 分邮票贴就行了),接下来的邮资也不难:
6 = 3 + 3
7 = 3 + 3 + 1
8 = 3 + 3 + 1 + 1
9 = 3 + 3 + 3
10 = 3 + 3 + 3 + 1
11 = 3 + 3 + 3 + 1 + 1
12 = 3 + 3 + 3 + 3
13 = 3 + 3 + 3 + 3 + 1
然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资。因此,对于这两种邮票的集合和上限 K=5,答案是 M=13。 [规模最大的一个点的时限是3s]
小提示:因为14贴不出来,所以最高上限是13而不是15
输入输出格式
输入格式:
第 1 行: 两个整数,K 和 N。K(1 <= K <= 200)是可用的邮票总数。N(1 <= N <= 50)是邮票面值的数量。
第 2 行 .. 文件末: N 个整数,每行 15 个,列出所有的 N 个邮票的面值,每张邮票的面值不超过 10000。
输出格式:
第 1 行:一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数。
这是一个我一开始就想偏了的完全背包。
一开始:
#include <cstdio>
const int N=201;
const int inf=0x3f3f3f3f;
int max(int x,int y) {return x>y?x:y;}
int min(int x,int y) {return x>y?y:x;}
bool dp[3000010];//表示在第i张时面值k是否ok
int k,n;//邮票总数,面值数
int kind[52];
int m_min=inf,m_max=0;
int main()
{
scanf("%d%d",&k,&n);
for(int i=1;i<=n;i++)
{
scanf("%d",kind+i);
m_max=max(kind[i],m_max);
m_min=min(kind[i],m_min);
}
dp[0]=true;
for(int i=0;i<k;i++)
{
int l=m_min*i,r=m_max*i;
for(int p=r;p>=l;p--)
if(dp[p])
for(int j=1;j<=n;j++)
dp[p+kind[j]]=true;
}
for(int i=1;i<=m_max*k+1;i++)
{
if(!dp[i])
{
printf("%d\n",i-1);
break;
}
}
return 0;
}
三维的呢。
完全背包:
#include <cstdio>
#include <cstring>
const int N=201;
const int inf=0x3f3f3f3f;
int max(int x,int y) {return x>y?x:y;}
int min(int x,int y) {return x>y?y:x;}
int dp[3000010];//表示在组成面值为i时用的最小邮票数
int k,n,m_max=0;//邮票总数,面值数
int kind[52];
int main()
{
memset(dp,0x3f,sizeof(dp));
scanf("%d%d",&k,&n);
for(int i=1;i<=n;i++)
{
scanf("%d",kind+i);
m_max=max(m_max,kind[i]);
}
dp[0]=0;
for(int i=1;i<=n;i++)
{
int r=m_max*k+1;
for(int j=0;j<=r;j++)
dp[j+kind[i]]=min(dp[j+kind[i]],dp[j]+1);
}
for(int i=0;;i++)
if(dp[i]>k)
{
printf("%d\n",i-1);
break;
}
return 0;
}
其实把\(k\)放在数组里面最后比,我还真没想到。
我所能理解的思维导向是从完全背包出发的。
每种邮票都有无限多张
注意常数优化,比如\(j\)的枚举显然并不是最优的
2018.5.3
洛谷 P2725 邮票 Stamps 解题报告的更多相关文章
- 洛谷P2725 邮票 Stamps
P2725 邮票 Stamps 37通过 224提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 为什么RE?在codevs上AC的. 题目背景 给一组 ...
- 【题解】洛谷 P2725 邮票 Stamps
目录 题目 思路 \(Code\) 题目 P2725 邮票 Stamps 思路 \(\texttt{dp}\).\(\texttt{dp[i]}\)表示拼出邮资\(i\)最少需要几张邮票. 状态转移方 ...
- 洛谷 P2725 邮票 Stamps
题目传送门 解题思路: f[i]表示凑总面值i所需的最少邮票张数,然后快乐的跑完全背包. AC代码: #include<iostream> #include<cstdio> # ...
- 洛谷 P2725 邮票 Stamps Label:DP
题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P2725 邮票题解
题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...
随机推荐
- [Oracle][Partition][Controlfile]Partition 操作是否和 Controlfile有关?
Partition 操作是否和 Controlfile有关? 通过实验来判断: 对比 Partition 前后的操作,看看controlfile 的dump 信息中是否有记录,结果发现没有记录在 co ...
- 【Java并发.1】简介
继上一本<深入理解Java虚拟机>之后,学习计划里的另一本书<Java并发编程实战>现在开始学习,并记录学习笔记. 第一章主要内容是介绍 并发 的简介.发展.特点. 编写正确的 ...
- 阿里云centos内docker的搭建
由于docker在17之后的版本分成了docker EE(企业版)和docker CE(社区版),那么我们在安装的时候就要开始纠结的选择了,这里我推荐了docker CE(社区版). 实际上这两个版本 ...
- Linux基础命令-Nginx-正则表达式( grep sed awk )-Shell Script--etc
Linux基础使用 学习内容博客 内存 查看swap分区信息 > swapon -s 添加swap分区 > mkswap /dev/sdb2 > 激活 swapon -a /dev/ ...
- rsync同步时,删除目标目录比源目录多余文件的方法(--delete)
在日常运维工作中,我们经常用到rsync这个同步神器.有时在同步两个目录时,会要求删除目标目录中比源目录多出的文件,这种情况下,就可用到rsync的--delete参数来实现这个需求了. 实例说明:在 ...
- rrd文件及rrd文件与实际数据的对比研究。
一,什么是rrd文件? 所 谓的“Round Robin” 其实是一种存储数据的方式,使用固定大小的空间来存储数据,并有一个指针指向最新的数据的位置.我们可以把用于存储数据的数据库的空间看成一个圆,上 ...
- 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式
这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频 https://www.bilibili.com/video/av19849697?share_medium=android&a ...
- 跟踪分析Linux内核的启动过程--实验报告 分析 及知识重点
跟踪分析Linux内核的启动过程 攥写人:杨光 学号:20135233 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.stud ...
- 实现基于SSH的门票管理系统开发的质量属性
我要做的是一个基于SSH的门票售卖系统,在系统中常见的质量属性有:可用性.可修改性.性能.安全性.易用性. 可用性方面: 可用性是指系统正常运行时间的比例,是通过两次故障之间的时间长度或在系统崩溃情况 ...
- beta版验收互评
排名 团队名称 项目名称 优点 缺点,bug 报告 1 别看了你没救了队 校园帮帮帮(已发布) 实现普通用户的登陆,修改个人信息,发布信息,下订单的功能:管理员登陆,修改个人信息,发布信息,下订单,增 ...