P2725 邮票 Stamps

题目背景

给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票。计算从 1 到 M 的最大连续可贴出的邮资。

题目描述

例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票。很容易贴出 1 到 5 分的邮资(用 1 分邮票贴就行了),接下来的邮资也不难:

6 = 3 + 3
7 = 3 + 3 + 1
8 = 3 + 3 + 1 + 1
9 = 3 + 3 + 3
10 = 3 + 3 + 3 + 1
11 = 3 + 3 + 3 + 1 + 1
12 = 3 + 3 + 3 + 3
13 = 3 + 3 + 3 + 3 + 1

然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资。因此,对于这两种邮票的集合和上限 K=5,答案是 M=13。 [规模最大的一个点的时限是3s]

小提示:因为14贴不出来,所以最高上限是13而不是15

输入输出格式

输入格式:

第 1 行: 两个整数,K 和 N。K(1 <= K <= 200)是可用的邮票总数。N(1 <= N <= 50)是邮票面值的数量。

第 2 行 .. 文件末: N 个整数,每行 15 个,列出所有的 N 个邮票的面值,每张邮票的面值不超过 10000。

输出格式:

第 1 行:一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数。


这是一个我一开始就想偏了的完全背包。

一开始:

#include <cstdio>
const int N=201;
const int inf=0x3f3f3f3f;
int max(int x,int y) {return x>y?x:y;}
int min(int x,int y) {return x>y?y:x;}
bool dp[3000010];//表示在第i张时面值k是否ok
int k,n;//邮票总数,面值数
int kind[52];
int m_min=inf,m_max=0;
int main()
{
scanf("%d%d",&k,&n);
for(int i=1;i<=n;i++)
{
scanf("%d",kind+i);
m_max=max(kind[i],m_max);
m_min=min(kind[i],m_min);
}
dp[0]=true;
for(int i=0;i<k;i++)
{
int l=m_min*i,r=m_max*i;
for(int p=r;p>=l;p--)
if(dp[p])
for(int j=1;j<=n;j++)
dp[p+kind[j]]=true;
}
for(int i=1;i<=m_max*k+1;i++)
{
if(!dp[i])
{
printf("%d\n",i-1);
break;
}
}
return 0;
}

三维的呢。


完全背包:

#include <cstdio>
#include <cstring>
const int N=201;
const int inf=0x3f3f3f3f;
int max(int x,int y) {return x>y?x:y;}
int min(int x,int y) {return x>y?y:x;}
int dp[3000010];//表示在组成面值为i时用的最小邮票数
int k,n,m_max=0;//邮票总数,面值数
int kind[52];
int main()
{
memset(dp,0x3f,sizeof(dp));
scanf("%d%d",&k,&n);
for(int i=1;i<=n;i++)
{
scanf("%d",kind+i);
m_max=max(m_max,kind[i]);
}
dp[0]=0;
for(int i=1;i<=n;i++)
{
int r=m_max*k+1;
for(int j=0;j<=r;j++)
dp[j+kind[i]]=min(dp[j+kind[i]],dp[j]+1);
}
for(int i=0;;i++)
if(dp[i]>k)
{
printf("%d\n",i-1);
break;
}
return 0;
}

其实把\(k\)放在数组里面最后比,我还真没想到。

我所能理解的思维导向是从完全背包出发的。

每种邮票都有无限多张

注意常数优化,比如\(j\)的枚举显然并不是最优的


2018.5.3

洛谷 P2725 邮票 Stamps 解题报告的更多相关文章

  1. 洛谷P2725 邮票 Stamps

    P2725 邮票 Stamps 37通过 224提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 为什么RE?在codevs上AC的. 题目背景 给一组 ...

  2. 【题解】洛谷 P2725 邮票 Stamps

    目录 题目 思路 \(Code\) 题目 P2725 邮票 Stamps 思路 \(\texttt{dp}\).\(\texttt{dp[i]}\)表示拼出邮资\(i\)最少需要几张邮票. 状态转移方 ...

  3. 洛谷 P2725 邮票 Stamps

    题目传送门 解题思路: f[i]表示凑总面值i所需的最少邮票张数,然后快乐的跑完全背包. AC代码: #include<iostream> #include<cstdio> # ...

  4. 洛谷 P2725 邮票 Stamps Label:DP

    题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...

  5. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  6. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  7. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  8. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  9. 洛谷 P2725 邮票题解

    题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...

随机推荐

  1. 重启 IIS7 应用或者应用程序池的批处理bat

    重启应用 本地: ctrl+r->iisreset -stop ctrl+r->iisreset -start ctrl+r->iisreset 远程(假如远程机器地址为10.5.6 ...

  2. core_cm4_simd.h文件是干嘛的?

    core_cm4_simd.h文件用于simd指令,即单指令多数据流,这个只有ARMv7架构才有,Cortex m3 m4 m7是ARMv7架构,而Cortex m0 m1是没有的. 所以,在新建Co ...

  3. 01-时间复杂度、对数器(python)、冒泡、选择、递归实质、归并、小和问题、逆序对、mid

    1.时间复杂度 常数时间的操作:一个操作如果和数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作. 时间复杂度为一个算法流程中,常数操作数量的指标.常用O(读作big O)来表示. 具体来说, ...

  4. libgdx学习记录26——Polygon多边形碰撞检测

    libgdx中Math封装了Polygon这个类,它是由多个定点进行描述实现的,在进行物体间的碰撞时,物体轮廓有时候是不规则的,这时候可以用一个多边形勾勒出其大概的轮廓,对其进行模拟. Polygon ...

  5. 如何打造网站克隆、仿站工具(C#版)

    前两天朋友叫我模仿一个网站,刚刚开始,我一个页面一个页面查看源码并复制和保存,花了我很多时间,一个字“累”,为了减轻工作量,我写了个网站“克隆工具”,一键克隆,比起人工操作, 效率提高了200%以上, ...

  6. Wechat login authorization(OAuth2.0)

    一.前言 昨天小组开了个会,让我今天实现一个微信网页授权的功能,可以让用户在授权之后无需再次登录既可进入用户授权界面.在这之前我也从没接触过微信公众号开发之类的,也不知道公众号后台是啥样子的,自己所在 ...

  7. ExtJS初探:了解 Ext Core

    Ext Core是一款和jQuery媲美的轻型JS库,基于MIT许可.对于Dom的操作,我个人还是比较喜欢用jQuery.当然如果项目中用的是ExtJS框架,也就没必要多引用一个jQuery,Ext ...

  8. python-批量添加图片水印

    前言: 最近总是被无良公众号和培训机构拷贝文章,他们根本不会给你备注原文出处,这种行为真的让人不高兴,所以计划以后的文章都添加上自己的水印. 话不多说,直接上代码. 一.单张图片添加文字水印 # -* ...

  9. linux第三次读书笔记

    第七章:链接 一.编译器驱动程序 编译系统提供的调用预处理器.编译器.汇编器和链接器来构造目标文件的程序. 二.静态链接 三.目标文件 三种形式: 1.可重定位目标文件: 2.可执行目标文件: 3.共 ...

  10. Linux内核分析作业第七周

    一. 预处理.编译.链接 gcc hello.c -o hello. gcc编译源代码生成最终可执行的二进制程序,GCC后台隐含执行了四个阶段步骤. 预处理 → 编译 → 汇编 → 链接 预处理:编译 ...