啊啊啊我昨天怎么没写题解wwww

补昨日题解。。。

题目链接 : https://www.luogu.org/problemnew/show/P3312

也是莫反 我要把fft留到今天写

【和zyn小可爱约好了 明天不填完坑就请她cafeking哦

表面题意:很明显了。。。

有一张N*m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和。

给定a,计算数表中不大于a的数之和。

第一步 : 每个格子里的那个东西是什么?

整除i和j的所有自然数之和

↓                ↓

gcd(i, j)        因数和

是 sigma(gcd(i, j))

sigma(x)表示x的因数和

现在的题意:

有一张n * m的数表,给定a,计算数表中不大于a的sigma(gcd(i, j))之和。

蒟蒻认为 看到gcd 又看到计数 就可以往莫反上靠靠了

另 这样在线做会超时的

由于随着a变大

变化仅为f[] 中的一些值由零变一

所以把询问按a排序

每次补齐卷积

详见代码work部分

代码:

几个要注意的细节【大佬自动无视】:

1)sigma不是单调递增 所以请排序

2)由于本题取模数十分毒瘤 所以随便爆int~

3)sigma并不是所有项都符合积性函数性质 所以要O(n ln n)筛

4)now注意上界 a可能很大但用不上

P3312 [SDOI2014]数表的更多相关文章

  1. 洛谷 P3312 [SDOI2014]数表 解题报告

    P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...

  2. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

  3. [bzoj3529] [洛谷P3312] [Sdoi2014] 数表

    Description 有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  4. luogu P3312 [SDOI2014]数表

    传送门 我们看要求的东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(gcd(i,j))\le a]\sigma(gcd(i,j))\] 然而\(\le a\)比较烦,可 ...

  5. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

  6. 洛谷 P3312 [SDOI2014]数表

    式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...

  7. 并不对劲的bzoj3529:loj2193:p3312:[SDOI2014]数表

    题目大意 定义函数\(f(x)=\sum_{k|x}k\) \(t\)(\(t\leq2*10^4\))组询问,每组给定\(n,m,a\)(\(n,m\leq10^5,a\leq10^9\)),求: ...

  8. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  9. 【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)

    3529: [Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有 ...

随机推荐

  1. BZOJ4911: [Sdoi2017]切树游戏

    BZOJ 4911 切树游戏 重构了三次.jpg 每次都把这个问题想简单了.jpg 果然我还是太菜了.jpg 这种题的题解可以一眼秒掉了,FWT+动态DP简直是裸的一批... 那么接下来,考虑如何维护 ...

  2. CF797F Mice and Holes 贪心、栈维护DP

    传送门 首先\(\sum c\)有些大,考虑将其缩小降低难度 考虑一个贪心:第一次所有老鼠都进入其左边第一个容量未满的洞(如果左边没有就进入右边第一个未满的洞),第二次所有老鼠都进入其右边第一个容量未 ...

  3. International Programming Retreat Day(2018.11.17)

    时间:2018.11.17地点:北京国华投资大厦

  4. 请允许我转载一篇关于套接字的博客:Socket

    这一篇文章,我将图文并茂地介绍Socket编程的基础知识,我相信,如果你按照步骤做完实验,一定可以对Socket编程有更好地理解. 本文源代码,可以通过这里下载 http://files.cnblog ...

  5. Codeforces Edu Round 63(Rated for Div. 2)

    感觉现在Edu场比以前的难多了…… A: 温暖人心 /* basic header */ #include <iostream> #include <cstdio> #incl ...

  6. 干货分享:vue2.0做移动端开发用到的相关插件和经验总结(2)

    最近一直在做移动端微信公众号项目的开发,也是我首次用vue来开发移动端项目,前期积累的移动端开发经验较少.经过这个项目的锻炼,加深了对vue相关知识点的理解和运用,同时,在项目中所涉及到的微信api( ...

  7. Spring+SpringMVC+MyBatis整合(easyUI、AdminLte3)

    实战篇(付费教程) 花了几天的时间,做了一个网站小 Demo,最终效果也与此网站类似.以下是这次实战项目的 Demo 演示. 登录页: 富文本编辑页: 图片上传: 退出登录: SSM 搭建精美实用的管 ...

  8. 天气提醒邮件服务器(python + scrapy + yagmail)

    天气提醒邮件服务器(python + scrapy + yagmail) 项目地址: https://gitee.com/jerry323/weatherReporter 前段时间因为xxx上班有时候 ...

  9. Tomcat利用MSM实现Session共享方案解说

    Session共享有多种解决方法,常用的有四种:1)客户端Cookie保存2)服务器间Session同步3)使用集群管理Session(如MSM) 4)把Session持久化到数据库 针对上面Sess ...

  10. PairProject 总结

    结对编程人员:张迎春,赵梓皓.下面是我们一起编程的照片. 结对编程的优点: 首先,结对编程的目的是为了减少编程的错误,在编程的时候,大家一起检查错误,一起分析有没有更加合理的编写方法,所以这是结对编程 ...