一个详细介绍

下面程序要做的是,5次循环,每次循环给x加1,赋值给y,然后打印出来,

x = tf.Variable(0.0)
#返回一个op,表示给变量x加1的操作
x_plus_1 = tf.assign_add(x, 1) #control_dependencies的意义是,在执行with包含的内容(在这里就是 y = x)前
#先执行control_dependencies中的内容(在这里就是 x_plus_1)
with tf.control_dependencies([x_plus_1]):
y = x
init = tf.initialize_all_variables() with tf.Session() as session:
init.run()
for i in xrange(5):
print(y.eval())

由于control_dependencies的所以执行print前都会先执行x_plus_1。

这个打印的是0,0,0,0,0 ,也就是说没有达到我们预期的效果,这是因为此时的y是一个复制了x变量的变量,并未和图上的节点相联系不接受流程控制函数的调遣,

改成如下,

import tensorflow as tf
x = tf.Variable(0.0)
print(x)
x_plus_1 = tf.assign_add(x, 1)
with tf.control_dependencies([x_plus_1]):
y = x + 0.0
print(y) #z=tf.identity(x,name='x')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(5):
print(sess.run(y))

<tf.Variable 'Variable:0' shape=() dtype=float32_ref>

Tensor("add:0", shape=(), dtype=float32)

1.0  2.0  3.0  4.0  5.0

可以看到当y定义为节点的输出后,就可以顺利执行操作了,此时y成为节点的输出,可以被图识别。

如果改成这样:

x = tf.Variable(0.0)
x_plus_1 = tf.assign_add(x, 1) with tf.control_dependencies([x_plus_1]):
y = tf.identity(x)#修改部分
init = tf.initialize_all_variables() with tf.Session() as session:
init.run()
for i in range(5):
print(y.eval())
This works: it prints 1, 2, 3, 4, 5.

这时候打印的是1,2,3,4,5

解释:

查询y为:Tensor("Identity_1:0", shape=(), dtype=float32),和节点联系起来了。
tf.identity是返回了一个一模一样新的tensor,再control_dependencies的作用块下,需要增加一个新节点到gragh中。

『TensorFlow』流程控制之tf.identity的更多相关文章

  1. 『TensorFlow』流程控制

    『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...

  2. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  3. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  4. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  5. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

  6. 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理

    Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...

  7. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

  8. 『TensorFlow』命令行参数解析

    argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...

  9. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

随机推荐

  1. 5、Flutter 实现 ViewPager、bottomNavigationBar 界面切换

    1.前言 首先我们想一下,如果在 Android 中实现 布局切换,通常的思路是: 做一个 viewpager 一组 Fragment 每个 Fragment 绑定一个 xml 最后填充至 viewp ...

  2. 20190412 T-SQL语言二

    Use xsxk;WITH c_count(id,xb,rs)AS (SELECT 班级,性别,count(*)FROM XS GROUP BY 班级,性别 ) SELECT * FROM c_cou ...

  3. RabbitMQ:Docker环境下搭建rabbitmq集群

    RabbitMQ作为专业级消息队列:如何在微服务框架下搭建 使用组件 文档: https://github.com/bijukunjummen/docker-rabbitmq-cluster 下载镜像 ...

  4. 安装archlinux的linux命令记录

    磁盘的分区:cfdisk 格式化分区:mkfs.ext4,mkswap,swapon 查看所有分区:lsblk /dev/sda 先挂载 / 分区:mount /dev/sda1 /mnt archl ...

  5. Django简单实例

    一.前戏-MVC框架与MTV框架 1.MVC MVC(Model View Controller),是一种软件工程开发的架构模式,不仅适用于软件开发,而且适用于其他广泛的设计和组织工作,主要思想通过分 ...

  6. Matlab的用法总结

    1. 对序列进行洗牌 randperm() randperm()产生随机的序列 %if filepaths 是一个5*1的结构体,then cshuffle = randperm(length(fil ...

  7. vue用npm安装删除模块element-ui mint-ui

    vue用npm安装删除模块element-ui mint-ui 在vue项目中先引入了element-ui,后来发现移动版的需要用mint-ui,所以需要先卸载了再安装.卸载element-ui:np ...

  8. 使用addeventlistener为js动态创建的元素添加事件监听

    点击li弹出内容,并且动态添加li之后有效 <button onclick="addFunction()">点我增加</button> <ul> ...

  9. ProcessExplorer使用分享

    工具描述 Process Explorer使用个轻量级的进程管理器,是由Sysinternals出品的免费工具,请猛击这里下载最新版本使用. 以下是官方介绍的翻译: “想知道是那个程序打开了某个文件或 ...

  10. openwrt修改hosts

    不同于标准linux主机,openwrt使用dnsmasq来管理dns和dhcp. 修改dnsmasq的配置文件 vi /etc/config/dhcp 在config dnsmasq这组下面添加 l ...