题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883

题意:给出一个$N \times M$的棋盘,每个格子有权值。你需要每一行选中一个格子,每一列也选中一个格子(一个格子不能同时被行选中和被列选中),求这些格子权值和的最小值,$2 \leq N,M \leq 10^5 , N \times M \leq 10^5$


考虑将行与列拆成点,格子的权值变为连接其对应行与列对应节点的边,我们的问题也就是需要找到一个边集,使得每一条边都在只匹配其端点中的一个的情况下匹配到每一个点,并且边权之和最小。考虑如何找“每一条边都在只匹配其端点中的一个的情况下匹配到每一个点”的边集。我们发现一棵有$N$个节点的树可以匹配$N - 1$个点,那么我们再在树上加一条边,构成基环树,就能够满足条件了。如果我们将边变为有向边,方向向其匹配的那个点,那么满足条件的基环树就是基环外向树。所以我们的目标就是找到这个图中的最小生成基环森林,使用类似$Kruskal$的方法可以实现。

具体的实现方式在并查集上有不同。我们维护某个集合中是否有环。如果某条边对应的两个端点在同一并查集中,如果没有环则设为有环并加上边权,否则无法合并;合并时两个有环的并查集无法合并,否则合并这两个集合,并且继承有无环的状态。

 #include<bits/stdc++.h>
 #define ll long long
 #define MAXN 100010
 using namespace std;

 inline ll read(){
     ll a = ;
     char c = getchar();
     while(!isdigit(c))
         c = getchar();
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return a;
 }

 struct Edge{
     ll start , end , w;
 }Ed[MAXN];
 ll fa[MAXN] , N , M;
 bool vis[MAXN];

 bool cmp(Edge a , Edge b){
     return a.w < b.w;
 }

 ll find(ll x){
     return fa[x] == x ? x : (fa[x] = find(fa[x]));
 }

 int main(){
     ll ans = ;
     N = read();
     M = read();
      ; i <= N ; i++)
          ; j <= M ; j++){
             Ed[(i - ) * M + j].start = i;
             Ed[(i - ) * M + j].end = j + N;
             Ed[(i - ) * M + j].w = read();
         }
     sort(Ed +  , Ed + N * M +  , cmp);
      ; i <= N + M ; i++){
         fa[i] = i;
         vis[i] = ;
     }
      ; i <= N * M ; i++){
         ll p = find(Ed[i].start) , q = find(Ed[i].end);
         if(p != q && !(vis[p] && vis[q])){
             fa[q] = p;
             ans += Ed[i].w;
             vis[p] |= vis[q];
         }
         else
             if(!vis[p]){
                 vis[p] = ;
                 ans += Ed[i].w;
             }
     }
     cout << ans;
     ;
 }

BZOJ4883 棋盘上的守卫 基环树、Kruskal的更多相关文章

  1. bzoj 4883 棋盘上的守卫 —— 基环树转化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 首先,注意到每个点可横可竖,但花费一样: 所以考虑行列的交集,那么这个条件可以转化为行 ...

  2. BZOJ4883 棋盘上的守卫(环套树+最小生成树)

    容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...

  3. BZOJ 4883 棋盘上的守卫 解题报告

    BZOJ4883 棋盘上的守卫 考虑费用流,但是数据范围太大 考虑 \(i\) 行 \(j\) 列如果被选择,那么要么给 \(i\) 行,要么给 \(j\) 列 把选择 \(i\) 行 \(j\) 列 ...

  4. [CF1027F]Session in BSU[最小基环树森林]

    题意 有 \(n\) 门课程,每门课程可以选择在 \(a_i\) 或者 \(b_i\) 天参加考试,每天最多考一门,问最早什么时候考完所有课程. \(n\leq 10^6\). 分析 类似 [BZOJ ...

  5. [BZOJ4883][Lydsy1705月赛]棋盘上的守卫[最小基环树森林]

    题意 有一大小为 \(n*m\) 的棋盘,要在一些位置放置一些守卫,每个守卫只能保护当前行列之一,同时在每个格子放置守卫有一个代价 \(w\) ,问要使得所有格子都能够被保护,需要最少多少的代价. \ ...

  6. bzoj4883 [Lydsy1705月赛]棋盘上的守卫 最小生成基环树森林

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4883 题解 每一行和每一列都必须要被覆盖. 考虑对于每一行和每一列都建立一个点,一行和一列之间 ...

  7. 【BZOJ4883】 [Lydsy1705月赛]棋盘上的守卫(最小生成树,基环树)

    传送门 BZOJ Solution 考虑一下如果把行,列当成点,那么显然这个东西就是一个基环树对吧. 直接按照\(Kruscal\)那样子搞就好了. 代码实现 代码戳这里

  8. 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)

    [题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...

  9. BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)

    4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 475  Solved: 259[Submit][St ...

随机推荐

  1. JMeter http(s)测试脚本录制器的使用

    JMeter http(s)测试脚本录制器的使用 by:授客 QQ:1033553122 http(s) Test Script Recorder允许Jmeter在你使用普通浏览器浏览web应用时,拦 ...

  2. 安卓开发_深入理解Content Provider

    一.Content Provider概述 Content Provider用于保存和获取数据,并使其对所有应用程序可见,这是不同应用程序之间共享数据的唯一方式,因为在Android中没有提供所有应用可 ...

  3. cmake:善用find_package()提高效率暨查找JNI支持

    cmake提供了很多实用的cmake-modules,通过find_package()命令调用这些modules,用于写CMakeLists.txt脚本时方便的查找依赖的库或其他编译相关的信息,善用这 ...

  4. MVC与单元测试实践之健身网站(七)-添加计划

    ​计划的制定涉及到周期-动作包-动作的关联操作,在上一篇<计划的添加与重置>完成了周期的设置.动作包的添加,现在要完成的是动作的添加操作. 一 具体功能 a) 在选定了一个大周期具有的天数 ...

  5. etcd raft如何实现Linearizable Read

    Linearizable Read通俗来讲,就是读请求需要读到最新的已经commit的数据,不会读到老数据. 对于使用raft协议来保证多副本强一致的系统中,读写请求都可以通过走一次raft协议来满足 ...

  6. windows端ndk 编译.c/cpp文件生成so库示例

  7. 高德地图JS API 开发小结

    项目中有一块功能要用到高德地图,所以,想把编码小结一下. 首先是地图的初始化 var map = new AMap.Map("mapDiv", {                  ...

  8. January 04th, 2018 Week 01st Thursday

    Just do what works for you, because there will always be someone who think differently. 就做你自己所能做的,因为 ...

  9. redis面试必问

    1.项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果? 面试题剖析 为什么要用缓存? 用缓存,主要有两个用途:高性能.高并发. 高性能 假设这么个场景,你有个操作,一个请求过来,吭哧 ...

  10. Hadoop 基本概念

    一.Hadoop 简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构,它可以使用户在不了解分布式底层细节的情況下开发分布式程序,充分利用集群的威力进行高速运算和存储. 从其定 ...