sklearn datasets模块学习
sklearn.datasets模块主要提供了一些导入、在线下载及本地生成数据集的方法,可以通过dir或help命令查看,我们会发现主要有三种形式:load_<dataset_name>、fetch_<dataset_name>及make_<dataset_name>的方法
① datasets.load_<dataset_name>:sklearn包自带的小数据集
- In [2]: datasets.load_*?
- datasets.load_boston#波士顿房价数据集
- datasets.load_breast_cancer#乳腺癌数据集
- datasets.load_diabetes#糖尿病数据集
- datasets.load_digits#手写体数字数据集
- datasets.load_files
- datasets.load_iris#鸢尾花数据集
- datasets.load_lfw_pairs
- datasets.load_lfw_people
- datasets.load_linnerud#体能训练数据集
- datasets.load_mlcomp
- datasets.load_sample_image
- datasets.load_sample_images
- datasets.load_svmlight_file
- datasets.load_svmlight_files
数据集文件在sklearn安装目录下datasets\data文件下
②datasets.fetch_<dataset_name>:比较大的数据集,主要用于测试解决实际问题,支持在线下载
- In [3]: datasets.fetch_*?
- datasets.fetch_20newsgroups
- datasets.fetch_20newsgroups_vectorized
- datasets.fetch_california_housing
- datasets.fetch_covtype
- datasets.fetch_kddcup99
- datasets.fetch_lfw_pairs
- datasets.fetch_lfw_people
- datasets.fetch_mldata
- datasets.fetch_olivetti_faces
- datasets.fetch_rcv1
- datasets.fetch_species_distributions
下载下来的数据,默认保存在~/scikit_learn_data文件夹下,可以通过设置环境变量SCIKIT_LEARN_DATA修改路径,datasets.get_data_home()获取下载路径
- In [5]: datasets.get_data_home()
- Out[5]: 'G:\\datasets'
③datasets.make_*?:构造数据集
- In [4]: datasets.make_*?
- datasets.make_biclusters
- datasets.make_blobs
- datasets.make_checkerboard
- datasets.make_circles
- datasets.make_classification
- datasets.make_friedman1
- datasets.make_friedman2
- datasets.make_friedman3
- datasets.make_gaussian_quantiles
- datasets.make_hastie_10_2
- datasets.make_low_rank_matrix
- datasets.make_moons
- datasets.make_multilabel_classification
- datasets.make_regression
- datasets.make_s_curve
- datasets.make_sparse_coded_signal
- datasets.make_sparse_spd_matrix
- datasets.make_sparse_uncorrelated
- datasets.make_spd_matrix
- datasets.make_swiss_roll
下面以make_regression()函数为例,首先看看函数语法:
make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
参数说明:
n_samples:样本数
n_features:特征数(自变量个数)
n_informative:相关特征(相关自变量个数)即参与了建模型的特征数
n_targets:因变量个数
bias:偏差(截距)
coef:是否输出coef标识
- In [7]: data = datasets.make_regression(5,3,2,2,1.0,coef=True)
- ...: data
- ...:
- Out[7]:
- (array([[-0.64470031, 2.24028402, -2.26147027],
- [-0.09554589, 1.4653344 , -0.8882202 ],
- [-1.36214673, 0.08935031, 0.66733545],
- [-1.30553824, 1.62553382, 0.65693763],
- [-0.81528358, 0.81659886, 1.32412053]]),
- array([[ 177.32114822, -42.34640341],
- [ 127.51997766, -1.98105497],
- [ -37.82547178, -104.69214796],
- [ 100.19123506, -95.62163254],
- [ 45.35860387, -59.94143654]]),
- array([[ 34.3135368 , 77.79161196],
- [ 88.57943632, 3.03795085],
- [ 0. , 0. ]]))
上述输出结果:元组中的三个数组分别对应输入数据X,输出数据y,coef对应数组
sklearn datasets模块学习的更多相关文章
- sklearn dataset 模块学习
sklearn.datasets官网:http://scikit-learn.org/stable/datasets/ sklearn.datasets 模块主要提供一些导入.在线下载及本地生成数据集 ...
- Scikit-Learn模块学习笔记——数据集模块datasets
scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集.数据包含在 datasets 里 datasets.fe ...
- (数据科学学习手札21)sklearn.datasets常用功能详解
作为Python中经典的机器学习模块,sklearn围绕着机器学习提供了很多可直接调用的机器学习算法以及很多经典的数据集,本文就对sklearn中专门用来得到已有或自定义数据集的datasets模块进 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- Python —— sklearn.feature_selection模块
Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature ex ...
- 使用sklearn进行集成学习——实践
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...
- 使用sklearn进行集成学习——理论
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? ...
- Day5 - Python基础5 常用模块学习
Python 之路 Day5 - 常用模块学习 本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shel ...
- [转]使用sklearn进行集成学习——理论
转:http://www.cnblogs.com/jasonfreak/p/5657196.html 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bag ...
随机推荐
- Zabbix系列之二——添加监控主机步凑
1.登录监控平台,配置——主机——创建主机 2.主机设置 3.添加模板
- 一款Timer倒计时器
http://files.cnblogs.com/Alandre/Time.zip自己做的哦 欢迎关注
- Zabbix4.2.0基本配置和邮件报警
目录 1. 修改中文 2. 添加监控本机 3. 监控本机mysql 4. 配置邮件报警 4.1 添加FTP模板 4.2 报警媒介类型 4.3 配置报警到用户 4.4 配置动作 4.5 模拟FTP故障 ...
- k8s小工具
1.Kubectx kubectx是一个在多集群和多命名空间的时候使用的非常好用的工具,kubectx与kubens绑定,kubectx用来在集群之间切换,kubens用来切换namespace. # ...
- Shell 示例:利用 $RANDOM 产生随机整数
代码如下: #!/bin/bash # $RANDOM 在每次调用的时候,返回一个不同的随机整数 # 指定的范围是: 0 - 32767 MAXCOUNT=10 count=1 echo echo & ...
- C++异常的几种捕获方式
捕获指定的类型 这样的话可以对每种异常做出不同的处理,例如: #include <iostream> using namespace std; void A(int n){ int a = ...
- ajax读取txt文本时乱码的解决方案
前言:第一次学习使用 ajax 就是用来读取文本 先给出现乱码的代码<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/ ...
- 将javaWeb项目转maven项目
不经常做此类转换,所以总是忘记转换方法,特此,记录下转换步骤 1.首先从SVN检出项目 2.找到导出项目路径 3.按住Shift+鼠标右键,打开控制台 3.输入命令mvn eclipse:eclips ...
- webpack4 系列教程(六): 处理SCSS
这节课讲解webpack4中处理scss.只需要在处理css的配置上增加编译scss的 LOADER 即可.了解更多处理css的内容 >>> >>> 本节课源码 & ...
- Fundebug前端JavaScript插件更新至1.2.0
摘要: Fundebug的前端JavaScript错误监控插件更新至1.2.0:支持监控WebSocket连接错误:修复了监控unhandledrejection错误的BUG,即未用catch处理的P ...