sklearn datasets模块学习
sklearn.datasets模块主要提供了一些导入、在线下载及本地生成数据集的方法,可以通过dir或help命令查看,我们会发现主要有三种形式:load_<dataset_name>、fetch_<dataset_name>及make_<dataset_name>的方法
① datasets.load_<dataset_name>:sklearn包自带的小数据集
- In [2]: datasets.load_*?
- datasets.load_boston#波士顿房价数据集
- datasets.load_breast_cancer#乳腺癌数据集
- datasets.load_diabetes#糖尿病数据集
- datasets.load_digits#手写体数字数据集
- datasets.load_files
- datasets.load_iris#鸢尾花数据集
- datasets.load_lfw_pairs
- datasets.load_lfw_people
- datasets.load_linnerud#体能训练数据集
- datasets.load_mlcomp
- datasets.load_sample_image
- datasets.load_sample_images
- datasets.load_svmlight_file
- datasets.load_svmlight_files
数据集文件在sklearn安装目录下datasets\data文件下
②datasets.fetch_<dataset_name>:比较大的数据集,主要用于测试解决实际问题,支持在线下载
- In [3]: datasets.fetch_*?
- datasets.fetch_20newsgroups
- datasets.fetch_20newsgroups_vectorized
- datasets.fetch_california_housing
- datasets.fetch_covtype
- datasets.fetch_kddcup99
- datasets.fetch_lfw_pairs
- datasets.fetch_lfw_people
- datasets.fetch_mldata
- datasets.fetch_olivetti_faces
- datasets.fetch_rcv1
- datasets.fetch_species_distributions
下载下来的数据,默认保存在~/scikit_learn_data文件夹下,可以通过设置环境变量SCIKIT_LEARN_DATA修改路径,datasets.get_data_home()获取下载路径
- In [5]: datasets.get_data_home()
- Out[5]: 'G:\\datasets'
③datasets.make_*?:构造数据集
- In [4]: datasets.make_*?
- datasets.make_biclusters
- datasets.make_blobs
- datasets.make_checkerboard
- datasets.make_circles
- datasets.make_classification
- datasets.make_friedman1
- datasets.make_friedman2
- datasets.make_friedman3
- datasets.make_gaussian_quantiles
- datasets.make_hastie_10_2
- datasets.make_low_rank_matrix
- datasets.make_moons
- datasets.make_multilabel_classification
- datasets.make_regression
- datasets.make_s_curve
- datasets.make_sparse_coded_signal
- datasets.make_sparse_spd_matrix
- datasets.make_sparse_uncorrelated
- datasets.make_spd_matrix
- datasets.make_swiss_roll
下面以make_regression()函数为例,首先看看函数语法:
make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
参数说明:
n_samples:样本数
n_features:特征数(自变量个数)
n_informative:相关特征(相关自变量个数)即参与了建模型的特征数
n_targets:因变量个数
bias:偏差(截距)
coef:是否输出coef标识
- In [7]: data = datasets.make_regression(5,3,2,2,1.0,coef=True)
- ...: data
- ...:
- Out[7]:
- (array([[-0.64470031, 2.24028402, -2.26147027],
- [-0.09554589, 1.4653344 , -0.8882202 ],
- [-1.36214673, 0.08935031, 0.66733545],
- [-1.30553824, 1.62553382, 0.65693763],
- [-0.81528358, 0.81659886, 1.32412053]]),
- array([[ 177.32114822, -42.34640341],
- [ 127.51997766, -1.98105497],
- [ -37.82547178, -104.69214796],
- [ 100.19123506, -95.62163254],
- [ 45.35860387, -59.94143654]]),
- array([[ 34.3135368 , 77.79161196],
- [ 88.57943632, 3.03795085],
- [ 0. , 0. ]]))
上述输出结果:元组中的三个数组分别对应输入数据X,输出数据y,coef对应数组
sklearn datasets模块学习的更多相关文章
- sklearn dataset 模块学习
sklearn.datasets官网:http://scikit-learn.org/stable/datasets/ sklearn.datasets 模块主要提供一些导入.在线下载及本地生成数据集 ...
- Scikit-Learn模块学习笔记——数据集模块datasets
scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集.数据包含在 datasets 里 datasets.fe ...
- (数据科学学习手札21)sklearn.datasets常用功能详解
作为Python中经典的机器学习模块,sklearn围绕着机器学习提供了很多可直接调用的机器学习算法以及很多经典的数据集,本文就对sklearn中专门用来得到已有或自定义数据集的datasets模块进 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- Python —— sklearn.feature_selection模块
Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature ex ...
- 使用sklearn进行集成学习——实践
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...
- 使用sklearn进行集成学习——理论
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? ...
- Day5 - Python基础5 常用模块学习
Python 之路 Day5 - 常用模块学习 本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shel ...
- [转]使用sklearn进行集成学习——理论
转:http://www.cnblogs.com/jasonfreak/p/5657196.html 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bag ...
随机推荐
- Linux学习笔记之十二————vim编辑器的分屏操作
一.分屏操作: sp: 上下分屏,后可跟文件名 vsp: 左右分屏,后可跟文件名 Ctr+w+w: 在多个窗口切换 二.启动分屏: 1.使用大写O参数进行垂直分屏 $ vim -On file1 fi ...
- Redis使用sortedset缓存IP段数据
我们原来的业务中,有很多地方需要解析用户IP的信息,刚开始是通过新浪.百度这些第三方的接口来解析IP信息,后来发现调用这些接口频繁时会被禁用一小段时间.不得已只得将数据存到我们的数据库中,表结构大致如 ...
- Ocelot 使用
官方文档:http://ocelot.readthedocs.io/en/latest/introduction/gettingstarted.html 新建两个Asp.net core API项目 ...
- 深入C#并行编程(1) -- 了解线程
一.操作系统用进程(Processe)分隔正在执行的程序,用线程(Thread)作为操作系统分配处理器时间的基本单元,进程上下文中可以运行多个线程,进程的所有线程共享其虚拟地址空间,所有线程均可执行程 ...
- SQL 必知必会·笔记<10>联结表
可伸缩(scale) 能够适应不断增加的工作量而不失败.设计良好的数据库或应用程序 称为可伸缩性好(scale well). 联结(JOIN) 联结(JOIN)是一种机制,用来在一条SELECT 语句 ...
- 四、windows下TortoiseGit的使用与操作
使用 Git命令有时候确实不怎么方便,特别是每次都要输入密码,如果配置 SSH 的方式,又实在是很麻烦.(当然,必须使用 Windows 神器才有方便友好的客户端图形界面啦!!!) 关于 Tortoi ...
- php 常用$_SERVER变量列表
$_SERVER['HTTP_ACCEPT_LANGUAGE'] //浏览器语言 $_SERVER['REMOTE_ADDR'] //当前用户 IP . $_SERVER['REMOTE_HOST'] ...
- [Mysql]——通过例子理解事务的4种隔离级别
SQL标准定义了4种隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的. 低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销. 首先,我们使用 test 数据库, ...
- [AGC001 E] BBQ Hard
Description 有\(N(N\leq 200000)\)个数对\((a_i,b_i)(a_i,b_i,\leq 2000)\),求出\(\sum\limits_{i=1}^n\sum\limi ...
- Qt使用正则表达式去掉小数位多余的0
QRegExp rx; rx.setPattern("(\\.){0,1}0+$"); double double01 = 15648.120000; double double0 ...