GridSearchCV交叉验证
代码实现(基于逻辑回归算法):
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 1 11:54:48 2018 @author: zhen 交叉验证
"""
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt iris = datasets.load_iris()
x = iris['data'][:, 3:]
y = iris['target'] def report(results, n_top=3):
for i in range(1, n_top + 1):
candidates = np.flatnonzero(results['rank_test_score'] == i)
for candidate in candidates:
print("Model with rank: {0}".format(i))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
results['mean_test_score'][candidate],
results['std_test_score'][candidate]))
print("Parameters: {0}".format(results['params'][candidate]))
print("") param_grid = {"tol":[1e-4, 1e-3,1e-2], "C":[0.4, 0.6, 0.8]} log_reg = LogisticRegression(multi_class='ovr', solver='sag')
# 采用3折交叉验证
grid_search = GridSearchCV(log_reg, param_grid=param_grid, cv=3)
grid_search.fit(x, y) report(grid_search.cv_results_) x_new = np.linspace(0, 3, 1000).reshape(-1, 1)
y_proba = grid_search.predict_proba(x_new)
y_hat = grid_search.predict(x_new) plt.plot(x_new, y_proba[:, 2], 'g-', label='Iris-Virginica')
plt.plot(x_new, y_proba[:, 1], 'r-', label='Iris-Versicolour')
plt.plot(x_new, y_proba[:, 0], 'b-', label='Iris-Setosa')
plt.show() print(grid_search.predict([[1.7], [1.5]]))
结果:
总结:使用交叉验证可以实现代码自动对设定范围参数的模型进行分别训练,最后选出效果最好的参数所训练出的模型进行预测,以求达到最好的预测效果!
GridSearchCV交叉验证的更多相关文章
- 机器学习——交叉验证,GridSearchCV,岭回归
0.交叉验证 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set) ...
- 支持向量机(SVM)利用网格搜索和交叉验证进行参数选择
上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过 ...
- 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...
- 多项式回归 & pipeline & 学习曲线 & 交叉验证
多项式回归就是数据的分布不满足线性关系,而是二次曲线或者更高维度的曲线.此时只能使用多项式回归来拟合曲线.比如如下数据,使用线性函数来拟合就明显不合适了. 接下来要做的就是升维,上面的真实函数是:$ ...
- MATLAB曲面插值及交叉验证
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离 ...
- 交叉验证(Cross Validation)原理小结
交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...
- scikit-learn一般实例之一:绘制交叉验证预测
本实例展示怎样使用cross_val_predict来可视化预测错误: # coding:utf-8 from pylab import * from sklearn import datasets ...
- oracle ebs应用产品安全性-交叉验证规则
转自: http://blog.itpub.net/298600/viewspace-625138/ 定义: Oracle键弹性域可以根据自定义键弹性域时所定义的规则,执行段值组合的自动交叉验证.使用 ...
- SVM学习笔记(二):什么是交叉验证
交叉验证:拟合的好,同时预测也要准确 我们以K折交叉验证(k-folded cross validation)来说明它的具体步骤.{A1,A2,A3,A4,A5,A6,A7,A8,A9} 为了简化,取 ...
随机推荐
- Hbase shell基本操作
1.启动cd <hbase_home>/bin$ ./start-hbase.sh 2.启动hbase shell # find hadoop-hbase dfs fileshadoop ...
- C# 实现拨号重连
先断开网络连接 /// <summary> /// 断开网络连接 /// </summary> public static void Logout() { ReadOnlyCo ...
- linux中一些简便的命令之tac/comm
tac tac是cat的反写,即反序显示文件内容 如文件a.txt内容如下: 1 2 3 4 5 则tac a.txt打印如下: 54321 我们可以使用awk来实现tac的功能: awk '{arr ...
- PID file /run/zabbix/zabbix_server.pid not readable (yet?) after start. 报错解决
报错如下: [root@localhost zabbix]# systemctl start zabbix-server Job for zabbix-server.service failed be ...
- 第六章:四大组件之Activity
tivityActivity作为Android四大组件之一,也是其中最重要的一个组件.作为一个与用户交互的组件,我们可以把Activity比较成为windows系统上的一个文件夹窗口,是一个与用户交互 ...
- Spring Boot - 修改Tomcat默认的8080端口
前言 默认情况下,Spring Boot内置的Tomcat服务会使用8080端口启动,我们可以使用以下任何技巧去更改默认的Tomcat端口: 注:我们可以通过server.port=0配置,去自动配置 ...
- 树莓派+tomcat+mysql安装及配置
0x00 系统:ubuntu-mate-16.04.2-desktop-armhf-raspberry-pi 该版本中apt源在国内访问速度不算慢,可以不换,但软件包不完整,建议添加阿里云源 deb ...
- 从零开始学 Web 之 CSS(一)选择器
大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...
- Kafka实战-实时日志统计流程
1.概述 在<Kafka实战-简单示例>一文中给大家介绍来Kafka的简单示例,演示了如何编写Kafka的代码去生产数据和消费数据,今天给大家介绍如何去整合一个完整的项目,本篇博客我打算为 ...
- 区块链 + 大数据:EOS存储
谈到区块链的存储,我们很容易联想到它的链式存储结构,然而区块链从比特币发展到今日当红的EOS,技术形态已经演化了10年之久.目前的EOS的存储除了确认结构的链式存储以外,在状态存储方面有了很大的进步, ...