【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇
【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇


提纲:
1. AlexNet:现代神经网络起源
2. VGG:AlexNet增强版
3. GoogleNet:多维度识别
4. ResNet:机器超越人类识别
5. DeepFace:结构化图片的特殊处理
6. U-Net:图片生成网络
7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测

期待目标:
1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算
2. 了解VGG,GoogLeNet,ResNet等复杂ImageNet模型的结构特点,简单设计思想
3. 针对特殊数据,特殊任务设计的神经网络结构
4. 深度剖析VGG TF代码,学会对已有模型进行参数读取,目标预测,特征提取。


AlexNet:现代神经网络起源
背景介绍:
ImageNet Challenge:1000类物体,每类1000张图片
传统方法思路:
1. 图片特征提取
2. 机器学习分类

背景介绍:
2010年冠军
System Overview
Dense Grid descriptor:HOG,LBP
Coding:Local coordinate super-vector
Pooling, SPM
Linear SVM

2011年冠军:Xerox Lab
1. 特征提取
2. Fisher 压缩
3. SVM分类








VGG:AlexNet增强版
1. VGG-AlexNet 对比卷积层 - 卷积群参数个数:138m - 60m
2. 识别率(top5)7.3% - 15.3%



VGG作用:
1. 结构简单:同AlexNet结构类似,均为卷积层,池化层,全连接层的组合。
2. 性能优异:同AlexNet提升明显,同GoogleNet,ResNet相比,表现接近。
3. 选择最多的基本模型:方便进行结构的优化,设计,SSD,RCNN,等其他任务的基本模型(base model)













1. 为什么ResNet有效?
1. 前向计算:低层卷积网络高层卷经济网络信息融合;层数越深,模型的表现力越强。
2. 反向计算:导数传递更直接,越过模型,直达各层。



人脸识别数据特点:
结构化:所有人脸,组成相似,理论上能够实现对齐
差异化:相同位置,形貌不同

















【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇的更多相关文章
- 【原创 深度学习与TensorFlow 动手实践系列 - 1】第一课:深度学习总体介绍
最近一直在研究机器学习,看过两本机器学习的书,然后又看到深度学习,对深度学习产生了浓厚的兴趣,希望短时间内可以做到深度学习的入门和实践,因此写一个深度学习系列吧,通过实践来掌握<深度学习> ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 2】第二课:传统神经网络
第二课 传统神经网络 <深度学习>整体结构: 线性回归 -> 神经网络 -> 卷积神经网络(CNN)-> 循环神经网络(RNN)- LSTM 目标分类(人脸识别,物品识别 ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...
- 【深度学习与TensorFlow 2.0】卷积神经网络(CNN)
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”. ...
- 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...
- 深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相 ...
- ML平台_微博深度学习平台架构和实践
( 转载至: http://www.36dsj.com/archives/98977) 随着人工神经网络算法的成熟.GPU计算能力的提升,深度学习在众多领域都取得了重大突破.本文介绍了微博引入深度学 ...
- 深度学习之TensorFlow构建神经网络层
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...
- 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...
随机推荐
- source命令用法详解
source命令用法 1 source FileName source命令作用 在当前bash环境下读取并执行FileName中的命令. *注:该命令通常用命令“.”来替代. 使用范例: 1 2 so ...
- 博客第一篇 osi七层网络传输模型
- 潭州课堂25班:Ph201805201 tornado 项目 第二课 项目 基本功能模块和 Git 使用 (课堂笔记)
tornado 相关说明 把图片显示在页面, 创建个 static 文件夹, 在这个文件下存放几张图片 在配置中指定静态文件路径, 在 html 文件中迭代出图片, 创建个包,重构 handlers ...
- 潭州课堂25班:Ph201805201 爬虫高级 第十课 Scrapy-redis分布 (课堂笔记)
利用 redis 数据库,做 request 队列,去重,多台数据共享, scrapy 调度 基于文件每户,默认只能在单机运行, scrapy-redis 默认把数据放到 redis 中,实现数据共享 ...
- 潭州课堂25班:Ph201805201 爬虫高级 第九课 scrapyd 部署 (课堂笔记)
c rapyd是 scrapy 的部署, 是官方提供的一个爬虫管理工具, 通过他可以非常方便的上传控制爬虫的运行, 安装 : pip install scapyd 他提供了一个json ,web, s ...
- 天天爱跑步 [NOIP2016]
Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务.这个游戏的地图可 ...
- Disruptor 详解
想了解一个项目,最好的办法就是,把它的源码搞到本地自己捣鼓. 在网上看了 N 多人对 Disruptor 速度的吹捧,M 多人对它的机制分析,就连 Disruptor 官方文档中,也 NB 哄哄自诩: ...
- Vue(二十)项目初始化步骤
提:需要安装 node.js / npm淘宝镜像 / webpack / vue-cli脚手架构建工具 1.创建项目 - vue init webpack framework https://gith ...
- 导出使用NPOI
调用: DataTable table = new DataTable(); #region 创建 datatable table.Columns.Add(new DataColumn("账 ...
- python 生成动态密码
import stringimport randomdef gen_psd(length=10): """length is password length"& ...