Luogu4512 【模板】多项式除法(多项式求逆+NTT)
http://blog.miskcoo.com/2015/05/polynomial-division 好神啊!
通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 550000
#define P 998244353
int n,m,t,a[N],b[N],r[N],c[N],d[N],e[N],inv3;
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int inv(int a){return ksm(a,P-);}
void DFT(int n,int *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(p,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void mul(int n,int *a,int *b)
{
DFT(n,a,),DFT(n,b,);
for (int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
DFT(n,a,inv3);
int invn=inv(n);
for (int i=;i<n;i++) a[i]=1ll*a[i]*invn%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("division.in","r",stdin);
freopen("division.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=m;i++) b[i]=read();
reverse(b,b+m+);
t=;c[]=inv(b[]);
inv3=inv();
while (t<n-m+)
{
t<<=;
for (int i=;i<t;i++) d[i]=b[i];
t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
memcpy(e,c,sizeof(e));
mul(t,e,d);
for (int i=;i<t;i++) e[i]=(P-e[i])%P;
e[]=(e[]+)%P;
for (int i=(t>>);i<t;i++) e[i]=;
mul(t,c,e);
for (int i=(t>>);i<t;i++) c[i]=;
t>>=;
}
memcpy(d,a,sizeof(a));
reverse(d,d+n+);
for (int i=n-m+;i<=n;i++) c[i]=d[i]=;
t=;while (t<=(n-m+<<)) t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
mul(t,c,d);
for (int i=n-m+;i<t;i++) c[i]=;
reverse(c,c+n-m+);
for (int i=;i<=n-m;i++) printf("%d ",c[i]);cout<<endl;
reverse(b,b+m+);
t=;while (t<=n) t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
mul(t,c,b);
for (int i=;i<m;i++) printf("%d ",(a[i]-c[i]+P)%P);
return ;
}
Luogu4512 【模板】多项式除法(多项式求逆+NTT)的更多相关文章
- [BZOJ3625][Codeforces Round #250]小朋友和二叉树 多项式开根+求逆
https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\( ...
- luoguP4238 【模板】多项式求逆 NTT
Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...
- 【learning】多项式相关(求逆、开根、除法、取模)
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里 ...
- 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...
- bzoj 3625: [Codeforces Round #250]小朋友和二叉树【NTT+多项式开根求逆】
参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html 列出生成函数方程,g(x)是价值x的个数 \[ f(x)=g(x)*f^2(x)+1 \ ...
- P4238 【模板】多项式求逆 ntt
题意:求多项式的逆 题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B 假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\ ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- JZYZOJ 2043 多项式除法和取余 NTT 多项式
http://172.20.6.3/Problem_Show.asp?id=2043 最开始用了FFT,交上去全tle和wa了(tle的比较多),测了一组数据发现求逆元的过程爆double了(毕竟系数 ...
- [洛谷P4721]【模板】分治 FFT_求逆
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:分治$FFT$博客,发现 ...
随机推荐
- Android 工程引入自定义Library后,工程无法识别Library中的类
这个问题有点神啊. 在工程中导入第三方类库包(自定义Library)本来运行的好好的,突然间所有引用的Library中的类都无法在工程中引用了,一个劲的打红叉,eclipse也重启了,项目也clean ...
- 不存在具有键“xxxId”的“IEnumerable<SelectListItem>”类型的 ViewData 项
项目中的某个页面,在访问时出现以下错误: 不存在具有键“xxxId”的“IEnumerable<SelectListItem>”类型的 ViewData 项 具体的场景说明如下: 一个编辑 ...
- Python 爬取 11 万 Java 程序员信息竟有这些重大发现!
一提到程序猿,我们的脑子里就会出现这样的画面: 或者这样的画面: 心头萦绕的字眼是:秃头.猝死.眼镜.黑白 T 恤.钢铁直男-- 而真实的程序猿们,是每天要和无数数据,以及数十种编程语言打交道.上能手 ...
- curl发送json格式数据
php的curl方法详细的见官方手册. curl_setopt用法: http://www.php.net/manual/en/function.curl-setopt.php <?php $ ...
- 51nod 抽卡大赛
抽卡大赛 链接 分析: $O(n^4)$的做法比较好想,枚举第i个人选第j个,然后背包一下,求出有k个比他大的概率. 优化: 第i个人,选择一张卡片,第j个人选的卡片大于第i个人的概率是$p_j$,那 ...
- 谈谈ThreadLocal的设计及不足
用Java语言开发的同学对 ThreadLocal 应该都不会陌生,这个类的使用场景很多,特别是在一些框架中经常用到,比如数据库事务操作,还有MVC框架中数据跨层传递.这里我们简要探讨下 Thread ...
- Flutter - Json序列化
这个问题,FlutterChina小组已经说明的非常清楚易懂了. 详见https://flutterchina.club/json/
- ASP.NET Core使用TopShelf部署Windows服务
asp.net core很大的方便了跨平台的开发者,linux的开发者可以使用apache和nginx来做反向代理,windows上可以用IIS进行反向代理. 反向代理可以提供很多特性,固然很好.但是 ...
- springboot+thymeleaf刨坑——首页加载js/css等失败解决方法
在使用thymeleaf加载css或js样式,当我们进入登录页的时候发现,所有的样式都是加载失败的.原因是在新版中有这样一个坑……: 当我们设置了addInterceptors-注册拦截器的时候,通常 ...
- 状态模式-State-订单状态
JAVA设计模式-状态模式-State-订单状态 21. State(状态) 意图: 允许一个对象在其内部状态改变时改变它的行为.对象看起来似乎修改了它的类. 解释: 比如说对订单的提交,第一 ...