解决问题:

有一个固定长度的1维矩阵,将这个矩阵的取样点进行扩充和减少

功能函数:

 def discrete_scale(data, num):
import numpy as np
import copy
"""
:param data: 原始一维矩阵数据
:param num: 设定的样本长度
:return d1: 目标矩阵输出
"""
len = data.shape[0] # 原始数据长度 if len < num: # 样本扩展
t = (len - 1) / (num - 1) # 映射差值
d0 = np.array(range(num)) # 序列映射
d0 = d0 * t d0_1 = copy.deepcopy(d0).astype(int) # 整数部分
d0_0 = d0 - d0_1 # 小数部分
dist = data[1:] - data[:-1] # 维度减小一个数据
d1_1 = data[d0_1]
d1_0 = dist[d0_1[:-1]]
d1_0 = d1_0 * d0_0[:-1]
d1 = copy.deepcopy(d1_1[:-1] + d1_0)
d1 = np.hstack((d1, data[-1])) elif len > num: # 样本压缩
t = (len - 1) / num # 映射差值 分成7个给值区域
d0 = np.array(range(num + 1)) # 序列映射
d0 = d0 * t d0_1 = copy.deepcopy(d0).astype(int) # 整数部分
list = []
for i in range(d0_1.shape[0] - 1):
list.append(np.mean(data[d0_1[i]:d0_1[i + 1] + 1]))
d1 = np.array(list) else: # 目标长度与原始长度相同
d1 = data
return d1

实例程序:

 import numpy as np
a = np.array(range(0,1000))
print(a)
b = np.sin(a/100)
print(b) num = 100
x1 = np.array(range(num))
y1 = discrete_scale(b, num) import matplotlib.pylab as plt
plt.plot(x1, y1, 'r-')
plt.plot(a, b, 'b-')
plt.show()
print(b)

python 离散序列 样本数伸缩(原创)的更多相关文章

  1. 第二天:python的函 数、循环和条件、类

    https://uqer.io/community/share/54c8af17f9f06c276f651a54 第一天学习了Python的基本操作,以及几种主要的容器类型,今天学习python的函数 ...

  2. 关于VisualStudio性能分析数据中的独占样本数和非独占样本数的意义

    VisualStudio中自带有Profile工具进行性能性能分析,其中用得比较多的数据是函数调用时间,它主要有独占样本数和非独占样本数两个指标,关于这两个指标代表的意义,MSDN的解释比较文艺: 非 ...

  3. Python学习day15-函数进阶(3)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  4. Python学习day14-函数进阶(2)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  5. Python学习day13-函数进阶(1)

    Python学习day13-函数进阶(1) 闭包函数 闭包函数,从名字理解,闭即是关闭,也就是说把一个函数整个包起来.正规点说就是指函数内部的函数对外部作用域而非全局作用域的引用. 为函数传参的方式有 ...

  6. Python学习day12-函数基础(2)

    <!doctype html>day12博客 figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { pos ...

  7. Python学习day11-函数基础(1)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  8. python 特定份数的数据概率统计(原创)

    使用numpy模块中的histogram函数模块 Histogram(a,bins=10,range=None,normed=False,weights=None)其中, a是保存待统计数据的数组, ...

  9. Python 文件行数读取的三种方法

    Python三种文件行数读取的方法: #文件比较小 count = len(open(r"d:\lines_test.txt",'rU').readlines()) print c ...

随机推荐

  1. linux环境启动数据库

    1.查看数据库监听的状态: 监听状态:lsnrctl status  出现如下列截图所示数据,说明切切换账户有问题:切换账户时要家:-:  如 su - oracle 第一步:打开Oracle监听$ ...

  2. 每10秒执行定时任务-crontab

    * * * * * /data/crontab.sh * * * * * sleep 10; /data/crontab.sh * * * * * sleep 20; /data/crontab.sh ...

  3. CentOS No package nginx available.

    CentOS No package nginx available. yum install epel-release 如果不行 https://blog.csdn.net/u012965373/ar ...

  4. angular2 学习

    一,angular2脚手架搭建 1,安装node 2,安装淘宝镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org 3,搭 ...

  5. SLICK基础

    1.sbt添加依赖 "com.typesafe.slick" %% "slick" % "3.2.3", "org.slf4j&q ...

  6. java多线程系列10 阻塞队列模拟

    接下来的几篇博客会介绍下juc包下的相关数据结构 包含queue,list,map等 这篇文章主要模拟下阻塞队列. 下面是代码 import java.util.LinkedList; import ...

  7. nodeJS实现一个在线填表应用

    1.构建一个web服务器 以前玩php和jsp时用过Apache.汤姆猫服务器,nodejs则有不同,他是需要自己createServer. //server.jsvar http = require ...

  8. solr7.7.0搜索引擎使用(三)(添加文件索引)

    众所周知,solr与es的最大区别是,solr可以对pdf,txt,doc等文件生成索引 那我们如何添加文件索引呢? 步骤1.添加core,取名暂且为 coreFile 在bin下执行命令 ./sol ...

  9. solr7.7.0搜索引擎使用(二)(添加搜索)

    一.安装完毕之后,需要为solr添加core,每一个搜索server就是一个core,solr可以有很多core,我们需要创建一个core用于我们的搜索 添加core的方式有两种: 第一种进入solr ...

  10. Python中删除easy_install安装的包

    网上查了一大圈,终于在官网上找到了.记一下,备忘...