问题描述:

斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

给定 N,计算 F(N)

示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.

示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.

示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.

提示:

  • 0 ≤ N ≤ 30

解答:

1.数组位移

class Solution:
def fib(self, N):
"""
:type N: int
:rtype: int
"""
a,b = 0,1
for _ in range(1,N+1):
a, b = b, a+b
return a

时间复杂度:O(N)

2.数学公式

class Solution:
def fib(self, N):
"""
:type N: int
:rtype: int
"""
phi = (1+5**0.5)/2
return int((phi**N-(-phi)**-N)/(5**0.5))

时间复杂度:O(1)

这种解法是考验数学功底了,和数组已经没有大关系

LeetCode(509. 斐波那数)的更多相关文章

  1. Java实现 LeetCode 509 斐波那契数

    509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...

  2. LeetCode.509——斐波那契数

    问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...

  3. leetcode 509. 斐波那契数

    问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) ...

  4. leetcode 509斐波那契数列

    递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索 ...

  5. 力扣(LeetCode) 509. 斐波那契数

    斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...

  6. 【LeetCode】509. 斐波那契数

    题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) = ...

  7. HDU 4565 So Easy! 广义斐波拉数 数论 (a+sqrt(b))^n%mod 模板

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. LeetCode_509.斐波那契数

    LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...

  9. 【剑指Offer】面试题10- I. 斐波那契数列

    题目 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2) ...

随机推荐

  1. (转)一位资深程序员大牛给予Java初学者的学习路线建议

    Java学习这一部分其实也算是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是你是如何学习Java的,能不能给点建议?今天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来谈每 ...

  2. java提取出一个字符串里面的Double类型数字

    String str="hh\n1\n22\n798.809\n0.89\n";         String regex="\\d+(?:\\.\\d+)?" ...

  3. String 类的实现(3)String类常用函数

      2 #include<iostream> 3 #include<stdio.h> 4 #include<assert.h> 5 #include <iom ...

  4. Ubuntu点击dash home就崩溃

    很崩溃的一个问题,搞了好久.并没有很清楚的知道具体哪个细节导致的问题,只是大概知道了原因,以及搞出了一个解决方案. 问题描述 台式机,没有独立显卡,也就是只有一个intel CPU在一起的小破显卡(我 ...

  5. vscode c++ cmake template project

    VSCode configure C++ dev environment claim use CMake to build the project. For debugging, VSCode's C ...

  6. uva 11367 (Dijkstra+DP)

    题意:一辆汽车在一张无向图中开告诉你每个城市加油的费用.每次给q个查询(起点,终点,油箱容量)问你最小花费是多少. 思路:一道Dijkstra状态的题目.在这种最短路问题中一维的dis数组记录的信息往 ...

  7. C# 之 索引器

    索引器允许类或者结构的实例按照与数组相同的方式进行索引取值,索引器与属性类似,不同的是索引器的访问是带参的. 索引器和数组比较: (1)索引器的索引值(Index)类型不受限制 (2)索引器允许重载 ...

  8. Get与Post区别小结

          Get:是以实体的方式得到由请求Url所指定资源的信息,如果请求Url只是一个数据产生过程,那么最终要在实体中返回的是处理过程的结果所指向的资源,而不是处理过程的描述. Post:是用来向 ...

  9. Python学习(十四) —— 并发编程

    一.进程的概念 进程即正在执行的一个过程,进程是对正在运行的程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念.操作系统的其它所有内容都是围绕进程的概念展开的. #必备的理论基础 #一 ...

  10. Codeforces 1140G Double Tree 倍增 + dp

    刚开始, 我以为两个点肯定是通过树上最短路径过去的, 无非是在两棵树之间来回切换, 这个可以用倍增 + dp 去维护它. 但是后来又发现, 它可以不通过树上最短路径过去, 我们考虑这样一种情况, 起点 ...