问题描述:

斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

给定 N,计算 F(N)

示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.

示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.

示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.

提示:

  • 0 ≤ N ≤ 30

解答:

1.数组位移

class Solution:
def fib(self, N):
"""
:type N: int
:rtype: int
"""
a,b = 0,1
for _ in range(1,N+1):
a, b = b, a+b
return a

时间复杂度:O(N)

2.数学公式

class Solution:
def fib(self, N):
"""
:type N: int
:rtype: int
"""
phi = (1+5**0.5)/2
return int((phi**N-(-phi)**-N)/(5**0.5))

时间复杂度:O(1)

这种解法是考验数学功底了,和数组已经没有大关系

LeetCode(509. 斐波那数)的更多相关文章

  1. Java实现 LeetCode 509 斐波那契数

    509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...

  2. LeetCode.509——斐波那契数

    问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...

  3. leetcode 509. 斐波那契数

    问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) ...

  4. leetcode 509斐波那契数列

    递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索 ...

  5. 力扣(LeetCode) 509. 斐波那契数

    斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...

  6. 【LeetCode】509. 斐波那契数

    题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) = ...

  7. HDU 4565 So Easy! 广义斐波拉数 数论 (a+sqrt(b))^n%mod 模板

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. LeetCode_509.斐波那契数

    LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...

  9. 【剑指Offer】面试题10- I. 斐波那契数列

    题目 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2) ...

随机推荐

  1. java获取当前时间精确到毫秒

    转载:http://af8991.iteye.com/blog/1217672 import java.text.SimpleDateFormat; import java.util.Date; im ...

  2. ajax---获取XMLHttpReuquest 对象

    ajax的异步和同步(Asynchronus Javascript and Xml) 同步:一个时间段只能干一件事:即按部就班,一件事一件事的做. 异步:相同的时间段做多件事,同时进行.依靠 XMLH ...

  3. 开启Java之旅

    学习应用系统的服务器开发,也许并不算什么“旅行”,也不会那么‘愉快’.但是,我希望这次能够同以往有所不同,更加努力地学习J2EE. 从2月份开始,从事web前端开发,并在公司的的项目中,独立完成了4个 ...

  4. gulp构建自动化项目

    'use strict'; var gulp = require('gulp'), browserSync = require('browser-sync').create(), SSI = requ ...

  5. JDK8 新特性流式数据处理

    https://blog.csdn.net/canot/article/details/52957262

  6. webpack学习笔记--其它配置项

     其它配置项 除了前面介绍到的配置项外,Webpack 还提供了一些零散的配置项.下面来介绍它们中常用的部分. Target JavaScript 的应用场景越来越多,从浏览器到 Node.js,这些 ...

  7. 次小生成树(POJ1679/CDOJ1959)

    POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...

  8. POJ 2243 简单搜索 (DFS BFS A*)

    题目大意:国际象棋给你一个起点和一个终点,按骑士的走法,从起点到终点的最少移动多少次. 求最少明显用bfs,下面给出三种搜索算法程序: // BFS #include<cstdio> #i ...

  9. 【译】学习JavaScript中提升、作用域、闭包的终极指南

    这似乎令人惊讶,但在我看来,理解JavaScript语言最重要和最基本的概念是理解执行上下文.通过正确学习它,你将很好地学习更多高级主题,如提升,作用域链和闭包.考虑到这一点,究竟什么是"执 ...

  10. Python_函数_参数

    def   是函数的关键字,Python解释器一旦执行到def,默认不执行 def li(): n = 8 n +=1 print(n) li() li2 = li li2() 结果: 9 9 ret ...