[LOJ6356]四色灯

题目大意:

有\(n(n\le10^9)\)个编号\(1\sim n\)的格子和\(m(m\le20)\)个按钮。每个格子有一个初始为\(0\)的数,每个按钮有一个数字\(a_i\),表示若这个按钮被选中,编号为\(a_i\)倍数的格子上的数字\(+1\)。

现在随机选取一个按钮的集合,求数值为\(4\)的倍数的格子的期望个数。

思路:

用\(f(S)\)表示\(1\sim n\)中,编号为\(\operatorname{lcm}(S)\)的倍数的格子数。

\(g(S)\)表示\(1\sim n\)中,编号\(x\)为\(\operatorname{lcm}(S)\)的倍数,且不存在集合\(T\),满足\(S\in T\)且\(\operatorname{lcm}(T)|x\)的格子数。

则答案为\(\sum\limits_{S}g(S)\sum\limits_{k}{|S|\choose 4k}\cdot2^{m-4k}\)。

时间复杂度\(\mathcal O(3^m)\)。

由于相同大小的集合,其贡献可以一起算。因此我们用\(G(x)\)表示\(\sum\limits_{|S|=x}g(S)\),则最终答案可表示为\(\sum\limits_{i}g(i)\sum\limits_{k}{i\choose 4k}\cdot2^{m-4k}\)。

时间复杂度\(\mathcal O(2^mm)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
#define popcount __builtin_popcount
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int M=21,mod=998244353;
int a[M],f[M],g[M],c[M][M];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return (ret%mod+mod)%mod;
}
int main() {
const int n=f[0]=getint(),m=getint();
for(register int i=0;i<=m;i++) {
for(register int j=c[i][0]=1;j<=i;j++) {
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
}
for(register int i=0;i<m;i++) {
a[i]=getint();
}
for(register int s=1;s<1<<m;s++) {
int64 lcm=0;
for(register int i=0;i<m;i++) {
if((s>>i)&1) {
lcm=lcm?lcm*a[i]/std::__gcd(lcm,1ll*a[i]):a[i];
}
if(lcm>n) break;
}
(f[popcount(s)]+=n/lcm)%=mod;
}
std::copy(&f[0],&f[m]+1,g);
for(register int i=m;i>=0;i--) {
for(register int j=i+1;j<=m;j++) {
g[i]-=1ll*g[j]*c[j][i]%mod;
(g[i]+=mod)%=mod;
}
}
int ans=0;
for(register int i=0;i<=m;i++) {
int tmp=0;
for(register int j=0;j<=i;j+=4) {
(tmp+=1ll*c[i][j]*(1<<(m-i))%mod)%=mod;
}
(ans+=1ll*g[i]*tmp%mod)%=mod;
}
printf("%lld\n",1ll*ans*inv(1<<m)%mod);
return 0;
}

[LOJ6356]四色灯的更多相关文章

  1. LOJ6356 四色灯(容斥+dp

    纪念第一次所有的解析全写在代码里面 QWQ 这里就简单说几句了 首先一个灯有贡献,当且仅当他被按了\(4k\)次. 那么我们定义\(f(S)\)表示\([1,n]\)中有多少个数\(x\)是集合\(S ...

  2. .NET应用架构设计—面向对象分析与设计四色原型模式(彩色建模、领域无关模型)(概念版)

    阅读目录: 1.背景介绍 2.问自己,UML对你来说有意义吗?它帮助过你对系统进行分析.建模吗? 3.一直以来其实我们被一个缝隙隔开了,使我们对OOAD遥不可及 4.四色原型模式填补这个历史缝隙,让我 ...

  3. DDD:四色原型中Role的 “六” 种实现方式

    背景 一个实体在不同的上下文中具备不同的职责,如:产品在“生产完成上下文”中具备的一些职责,在“质检相关上下文”中具备另外一些职责.四色原型.DIC和“UML事物模式”在不同的维度阐述了这一情况,在代 ...

  4. .NET应用架构设计—四色原型模式(色彩造型、域无关的模型)(概念版)

    阅读文件夹: 1.背景介绍 2.问自己,UML对你来说有意义吗?它帮助过你对系统进行分析.建模吗? 3.一直以来事实上我们被一个缝隙隔开了,使我们对OOAD遥不可及 4.四色原型模式填补这个历史缝隙, ...

  5. DDD:四色原型中Role的 “六” 种实现方式和PHP的Swoole扩展

    目录 背景六种实现方式第一种:未显式体现角色的模式.第二种:使用“显式接口”显式体现角色的模式.第三种:使用“扩张方法”显式体现角色的模式.第四种:使用“领域服务”显式体现角色的模式.第五种:使用“包 ...

  6. 四色GDOI&GDOI2015滚粗记

    好吧自己太弱写不了什么四色NOI只能学学别人写个四色GDOI了...首先自己还是太弱所以就被学校卡了个名额就进不了省队了QAQ.自己GDOI觉得考得不错可是NOIP毕竟少了人家5分根本追不上去好不QA ...

  7. POJ-1129 DFS染色+四色原理的应用

    OJ-ID:     POJ-1129 author:    Caution_X date of submission:    20190927 tags:    DFS+四色原理的应用 descri ...

  8. [ZigBee] 13、ZigBee基础阶段性回顾与加深理解——用定时器1产生PWM来控制LED亮度(七色灯)

    引言:PWM对于很多软件工程师可能又熟悉又陌生,以PWM调节LED亮度为例,其本质是在每个周期都偷工减料一些,整体表现出LED欠压亮度不同的效果.像大家看到的七色彩灯其原理也类似,只是用3路PWM分别 ...

  9. 基于arm开发板四个按键控制四个灯亮

    基于s5pv2410,cortex a8的四个按键每一个按键点了对应的灯 对于用汇编来编程的话不难,重点在于数据手册,电路图,管脚的看懂 直接上代码 .globl _start_start: ldr ...

随机推荐

  1. Oracle logminer 日志挖掘

    Table of Contents 1. LOGMNR简介 2. 创建数据字典 2.1. 外部文件存储数据字典 2.2. redo log 存储数据字典 3. 添加需要分析的文件 4. 开始分析文件 ...

  2. JAVA 代码中使用中文的办法

    在编译代码中插入 -encoding UTF-8 示例: javac -encoding UTF-8 *.java

  3. KnockOut -- 快速入门

    简单示例 <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf- ...

  4. How to disable Microsoft Compatibility Telemetry

    Issue: How to disable Microsoft Compatibility Telemetry (CompatTelRunner.exe)?   Option : Disable Mi ...

  5. rabbitmq的安装与使用

    1.RabbitMQ的安装,rabbitmq为erlang语言开发,所以先安装erlang语言开发包,现在电脑一般都是64位的,所以下载64位的都行了.红色框可以选择版本,箭头选择64位的进行下载.下 ...

  6. 第k个互质数(二分 + 容斥)

    描述两个数的a,b的gcd为1,即a,b互质,现在给你一个数m,你知道与它互质的第k个数是多少吗?与m互质的数按照升序排列. 输入 输入m ,k (1<=m<=1000000;1<= ...

  7. Django中model层详解

    #!/usr/bin/env python# _*_ coding:utf-8 _*_ from django.db import models class UserType(models.Model ...

  8. noip2017逛公园

    题解: 之前知道正解并没有写过.. #include <bits/stdc++.h> using namespace std; #define rint register int #def ...

  9. bzoj2018年5月赛

    题解: 老早之前看的并没有写题解.. t1: 我刚开始想的是线段树来维护.. 看了题解发现直接二分就行了 很容易发现因数只会有30个 那么我们就统计每一种因数在这段区间的个数 然后开个vector记录 ...

  10. 【转】利用 selenium 的 webdrive 驱动 headless chrome

    1.参考 使用 headless chrome进行测试 2.概念 Headless模式解决了什么问题: 自动化工具例如 selenium 利用有头浏览器进行测试,面临效率和稳定性的影响,所以出现了 H ...