STAT UN2102 Homework
STAT UN2102 Homework 4 [100 pts]
Due 11:59pm Monday, May 6th on Canvas
Your homework should be submitted on Canvas as an R Markdown file. Please submit
the knitted .pdf or .html file along with the .Rmd file. We will not (and cannot) accept
any other formats. Please clearly label the questions in your responses and support your
answers by textual explanations and the code you use to produce the result. We may print
out your homeworks. Please do not waste paper by printing the dataset or any vector over,
say, length 20.
Goals: Simulating probability distributions using the accept-reject method, simulating a
sampling distribution related to the linear regression model.
1 Reject-Accept Method
Let random variable X denote the temperature at which a certain chemical reaction takes
place. Suppose that X has probability density function
Perform the following tasks:
1. Determine the maximum of f(x). Find an envelope function e(x) by using a uniform
distribution for g(x) and setting e(x) = maxx{f(x)}.
2. Using the Accept-Reject Algorithm, write a program that simulates 1000 draws
from the probability density function f(x) from Equation 1.
3. Plot a histogram of your simulated data with the density function f overlayed in the
graph. Label your plot appropriately.
2 Regression and Empirical Size
2.1 Regression
We work with the grocery retailer dataset from Canvas. The description follows:
1
A large national grocery retailer tracks productivity and costs of its facilities closely. Consider
a data set obtained from a single distribution center for a one-year period. Each data
point for each variable represents one week of activity. The variables included are number
of cases shipped in thousands (X1), the indirect costs of labor as a percentage of total
costs (X2), a qualitative predictor called holiday that is coded 1 if the week has a holiday
and 0 otherwise (X3), and total labor hours (Y ). Consider the multiple linear regression
model
(2) Yi = β0 + β1 Xi1 + β2 Xi2 + β3 Xi3 + i, i = 1, 2, . . . , 52,
and iid~ N(0, σ2).
Perform the following tasks:
4. Read in the grocery retailer dataset. Name the dataset grocery.
5. Use the least squares equation = (XTX)
1XTY to estimate regression model (2).
To estimate the model, use the linear model function in R, i.e., use lm().
6. Use R to estimate σ2, i.e., compute MSE =1
. To perform this task,
use the residuals function.
2.2 Test for Slope
STAT UN2102作业代做、代做R Markdown file作业、代写R课程作业
Now consider investigating if the number of cases shipped (X1) is statistically related to
total labor hours (Y ). To investigate the research question, we run a t-test on the coefficient
corresponding to X1, i.e., we test the null alternative pair
(3) H0 : β1 = 0 versus HA : β1 6= 0.
To run the hypothesis testing procedure, we use the t-statistic
1 is the second element of the least squares estimator β= (XTX)
1XTY and
SE(β1) is the standard error of β?
1. The least squares estimates, estimated standard errors,
t-statistics and p-values for all coefficients β0, β1, β2, β3 are nicely organized in the standard
linear regression output displayed in Table 1. To get this output in R, use the summary()
function on your model.
Test the manager’s claim in (3) using the R functions lm() and summary().
2
Table 1: Standard Multiple Linear Regression Output
Estimate Std. Error t value Pr(> |t|) or Sig
(Intercept) β
2.3 Sampling Distribution
Under model (2) and under the null hypothesis H0 : β1 = 0, the test statistic (4) has a
student’s t-distribution with n 4 degrees of freedom, i.e.,
The goal of this section is to simulate the sampling distribution of the t-statistic.
Perform the following tasks:
5. Write a loop that simulates the sampling distribution of the t-statistic under null
hypothesis (3) with the multiple linear regression model (2). To accomplish this task:
i. Assume the true model relating Y with X1, X2, X3 is
(5) Yi = 4200 + β1Xi1 ? 15X2 + 620X3 + i, i = 1, 2, . . . , 52,i
iid~ N(0, 20500).
ii. Assuming H0 : β1 = 0 is true, simulate 10,000 draws from model (5) using the
fixed covariates X2, X3.
iii. For each iteration of the loop, fit the full model
using the simulated Y and fixed covariates X1, X2, X3.
iv. For each iteration of the loop, also compute the t-statistic from equation (4).
Store these values in a vector t.stat. Hint: Use the summary function in R and
extract the actual summary table using the code summary(model)[[4]]. Then
extract the relevant t-statistic from the table.
v. Display the first six elements of your simulated t-values.
3
7. Plot a histogram of the simulated sampling distribution. Overlay the correct t-density
on this histogram, i.e., overlay the density t(df = 52 ? 4). Plot the density in green
and set breaks=40 in the histogram. Make sure to label the plot appropriately. You
can use base R or ggplot.
8. Recall that the significance level of a testing procedure is defined as
P(Type I error) = P(Rejecting H0 when H0 is true) = α.
The significance level is often called the size of the testing procedure. Based on
significance levels α = 0.10, 0.05, 0.01, compute the sample proportion of simulated
t-values that fell in the rejection region. The proportion of simulated rejected t-values
under the null is called the empirical size of a test. The three values should be close
to the actual α levels.
因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com
微信:codinghelp
STAT UN2102 Homework的更多相关文章
- bzoj 4320: ShangHai2006 Homework
4320: ShangHai2006 Homework Time Limit: 10 Sec Memory Limit: 128 MB Description 1:在人物集合 S 中加入一个新的程序员 ...
- HDU 1789 Doing Homework again(贪心)
Doing Homework again 这只是一道简单的贪心,但想不到的话,真的好难,我就想不到,最后还是看的题解 [题目链接]Doing Homework again [题目类型]贪心 & ...
- hdu-1789-Doing Homework again
/* Doing Homework again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 1789 Doing Homework again (贪心)
Doing Homework again http://acm.hdu.edu.cn/showproblem.php?pid=1789 Problem Description Ignatius has ...
- Doing Homework 状态压缩DP
Doing Homework 题目抽象:给出n个task的name,deadline,need. 每个任务的罚时penalty=finish-deadline; task不可以同时做.问按怎样的 ...
- 机器学习 —— 概率图模型(Homework: Exact Inference)
在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图).本周作业的主要内容就是自行编写概率图模型的求解器.实际上,从根本 ...
- hdoj 1789 Doing Homework again
Doing Homework again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- homework做了些什么?
第一步:get_new_guid_uid_pairs_{$ymd} 参数是时间和100上的文件. 那么100上的文件是从哪里来的呢? 我们进入到100机器上,打开root权限下的cron,看到如下内容 ...
- HDU 1074 Doing Homework (dp+状态压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...
随机推荐
- Serv-u FTP迁移(windows_to_windwos)
需求分析 公司服务器要做维护,部分服务器需要进行迁移处理,其中就包括Ser-v FTP服务器. 确认环境信息 角色 ip 系统版本 sql版本 Serv-U版本 ODBC account/passwo ...
- ruby 基础知识2 - 区块 block
原文 1. block中的 yield 与遍历 5.times do |i| puts i end 或者 def my_times(n) i = 0 while n > i i += 1 yie ...
- Java编程基础篇第六章
构造方法 一:概念: 给对象的数据(属性)进行初始化 二:特点: a.方法名与类同名(字母大小写也要一样) b.没有返回值类型 c.没有具体的返回值 return 三:构造方法重载: 方法名相同,与返 ...
- 原生JS表格行拖动排序,添加了回调功能
function tableDnD(el, callback) { if (typeof (el) == "string") { el = document.getElementB ...
- HTTP协议实际使用笔记
mozilla的帮助文档: https://developer.mozilla.org/zh-CN/docs/Web/HTTP HTTP协议详解(转) php http头设置相关信息 这个2篇最好先看 ...
- C++标准模板库之vector
vector(向量容器),是 C++ 中十分有用一个容器.它能够像容器一样存放各种类型的对象,vector 是一个能够存放任意类型(类型可以是int, double, string, 还可以是类)的动 ...
- 查看Sql Server 数据库的内存使用情况
-- 查询SqlServer总体的内存使用情况 select type , sum(virtual_memory_reserved_kb) VM_Reserved , sum(virtual_memo ...
- gcc update in centos to 6.3 by scl
CentOS 7虽然已经出了很多年了,但依然会有很多人选择安装CentOS 6,CentOS 6有些依赖包和软件都比较老旧,如今天的主角gcc编译器,CentOS 6的gcc版本为4.4,CentOS ...
- Spring Boot事务管理(下)
在上两篇 Spring Boot事务管理(上)和Spring Boot事务管理(中)的基础上介绍注解@Transactional. 5 @Transactional属性 属性 类型 描述 value ...
- FPGA总结——杂谈
数字设计 一.关于组合逻辑 竞争冒险:一个逻辑门的多个输入信号同时跳变(路径时延不同,使得状态改变的时刻有先有后).这种现象叫做竞争,引起的结果称为冒险. 消除毛刺(冒险):(1)增加冗余项:(2 ...