Canonical Coin Systems【完全背包】
问题 C: Canonical Coin Systems
时间限制: 1 Sec 内存限制: 128 MB
提交: 200 解决: 31
[提交] [状态] [命题人:admin]
题目描述

A coin system S is a finite (nonempty) set of distinct positive integers corresponding to coin values, also called denominations, in a real or imagined monetary system. For example, the coin system in common use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For any coin system S, we assume that there is an unlimited supply of coins of each denomination, and we also assume that S contains 1,since this guarantees that any positive integer can be written as a sum of (possibly repeated) values in S.
Cashiers all over the world face (and solve) the following problem: For a given coin system and a positive integer amount owed to a customer, what is the smallest number of coins required to dispense exactly that amount? For example, suppose a cashier in Canada owes a customer 83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,8 coins, but this is not optimal, since the cashier could instead dispense 25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the
largest denomination that is less than or equal to the amount still owed, until the amount owed reaches zero. A coin system for which the greedy algorithm is always optimal is called canonical.
Your challenge is this: Given a coin system S = {c1, c2, . . . , cn }, determine whether S is canonical or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a positive integer x such that the minimum number of coins required to dispense exactly x is less than the number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4}, for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-canonical, then the smallest counterexample is less than the sum of the two largest denominations.
输入
Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of denominations in the coin system. The next line contains the n denominations as space-separated integers c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.
输出
Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is non-canonical.
样例输入
复制样例数据
4 1 2 4 8
样例输出
canonical
题意 : 有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)
正确的货币张数可以通过完全背包算出 转移方程 dp[i] = d[i - a[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,a[j]代表第j张钱的面额)
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =2000010;
using namespace std;
int n;
int a[maxn],dp[maxn];
int main(){
sca(n);
for(int i = 0; i < n; i++)
sca(a[i]);
sort(a,a+n);
int maxl = a[n - 1] * 2;
for(int i = 0; i < maxl; i++) dp[i] = INF;
dp[0] = 0;
int flag = 1;
for(int i = 1; i < maxl; i++){
for(int j = 0; j < n; j++){
if(a[j] <= i)
dp[i] = min(dp[i], dp[i - a[j]] + 1); //背包
}
int cnt = 0;
int sum = i;
int pos = n - 1;
while(sum){ //贪心
while(sum >= a[pos]){
sum -= a[pos];
cnt ++;
}
pos--;
}
if(cnt > dp[i]) flag = 0; //不等就是不规范
}
if(flag) printf("canonical\n");
else printf("non-canonical\n");
return 0;
}
Canonical Coin Systems【完全背包】的更多相关文章
- upc组队赛6 Canonical Coin Systems【完全背包+贪心】
Canonical Coin Systems 题目描述 A coin system S is a finite (nonempty) set of distinct positive integers ...
- uva674 Coin Change ——完全背包
link:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA-674 Coin Change---完全背包
题目链接: https://vjudge.net/problem/UVA-674 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 思路: 每 ...
- Light oj 1233 - Coin Change (III) (背包优化)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1233 题目就不说明了. 背包的二进制优化,比如10可以表示为1 2 4 3,而 ...
- [luoguP1474] 货币系统 Money Systems(背包)
传送门 背包 ——代码 #include <cstdio> #include <iostream> #define LL long long int v, n; LL f[10 ...
- codeforces 284 E. Coin Troubles(背包+思维)
题目链接:http://codeforces.com/contest/284/problem/E 题意:n种类型的硬币,硬币的面值可能相同,现在要在满足一些限制条件下求出,用这些硬币构成t面值的方案数 ...
- 【题解】coin HDU2884 多重背包
题目 Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 【洛谷】P1474 货币系统 Money Systems(背包dp)
题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...
- 算法入门经典大赛 Dynamic Programming
111 - History Grading LCS 103 - Stacking Boxes 最多能叠多少个box DAG最长路 10405 - Longest Common Subsequence ...
随机推荐
- vue里使用create、mounted调用方法的正确姿势
参考:https://blog.csdn.net/Honnyee/article/details/82421844
- react Context
import React, { useState, useEffect, useContext } from "react"; import axios from "ax ...
- React 学习之路 (一)
先说一说对React的体验,总结 首先react相对angular来说入手简单暴力,在学习的这段时间里发现: 我们每天做的事就是在虚拟DOM上创建元素然后在渲染到真实的DOM中 渲染到真实DOM上的R ...
- 项目实战02:LVS 实现负载均衡
目录 实现基于LVS负载均衡集群的电商网站架构 实战一:LVS的NAT模式实现负载均衡 实战二:LVS的DR 模式实现负载均衡 实战三:实现80.443端口都可访问服务,且LVS实现持久连接 实验四: ...
- python练习题-day12
用列表推导式做下列小题 (1) 过滤掉长度小于3的字符串列表,并将剩下的转换成大写字母 lst1=["admhdja","aksaudj","fh&q ...
- Failed to load driver class com.mysql.jdbc.Driver from HikariConfig class classloader sun.misc.Launcher$AppClassLoader@18b4aac2
1.错误日志 Failed to load driver class com.mysql.jdbc.Driver from HikariConfig class classloader sun.mis ...
- 点击当前选项显示当前内容jquery
<script language="javascript"> $(document).ready(function(){ $(".moren a") ...
- DAX/PowerBI系列 - 参数表(Parameter Table) 度量值模板
DAX/PowerBI系列 - 参数表(Parameter Table) 度量值模板 难度: ★★☆☆☆(2星) 适用范围: ★★★☆☆(3星) 概况: 当你有多个度量值都需要计算YTD,MoM,而又 ...
- ionic3 在ios9.0 系统下 会出现ReferenceError:Can't find variable:Intl 错误提示
ionic3 框架开发app 在ios 9.0版本中 ReferenceError:Can't find variable:Intl 错误提示: 在index.html 文件中添加 <scri ...
- require 和 import 区别
我很懵逼啊 都是在引用模块,那到底用哪个? 参考:https://www.cnblogs.com/hwldyz/p/9145959.html 看来会明白一点的 首先这两个都是为了JS模块化编程使用. ...