问题 C: Canonical Coin Systems

时间限制: 1 Sec  内存限制: 128 MB

提交: 200  解决: 31

[提交] [状态] [命题人:admin]

题目描述

A coin system S is a finite (nonempty) set of distinct positive integers corresponding to coin values, also called denominations, in a real or imagined monetary system. For example, the coin system in common use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For any coin system S, we assume that there is an unlimited supply of coins of each denomination, and we also assume that S contains 1,since this guarantees that any positive integer can be written as a sum of (possibly repeated) values in S.

Cashiers all over the world face (and solve) the following problem: For a given coin system and a positive integer amount owed to a customer, what is the smallest number of coins required to dispense exactly that amount? For example, suppose a cashier in Canada owes a customer 83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,8 coins, but this is not optimal, since the cashier could instead dispense 25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the

largest denomination that is less than or equal to the amount still owed, until the amount owed reaches zero. A coin system for which the greedy algorithm is always optimal is called canonical.

Your challenge is this: Given a coin system S = {c1, c2, . . . , cn }, determine whether S is canonical or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a positive integer x such that the minimum number of coins required to dispense exactly x is less than the number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4}, for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-canonical, then the smallest counterexample is less than the sum of the two largest denominations.

输入

Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of denominations in the coin system. The next line contains the n denominations as space-separated integers c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.

输出

Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is non-canonical.

样例输入

复制样例数据

4
1 2 4 8

样例输出

canonical

题意 : 有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)

正确的货币张数可以通过完全背包算出  转移方程 dp[i] = d[i - a[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,a[j]代表第j张钱的面额)

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =2000010;
using namespace std;
int n;
int a[maxn],dp[maxn];
int main(){
  sca(n);
  for(int i = 0; i < n; i++)
    sca(a[i]);
  sort(a,a+n);
  int maxl = a[n - 1] * 2;
  for(int i = 0; i < maxl; i++) dp[i] = INF;
  dp[0] = 0;
  int flag = 1;
  for(int i = 1; i < maxl; i++){
    for(int j = 0; j < n; j++){
      if(a[j] <= i)
        dp[i] = min(dp[i], dp[i - a[j]] + 1);    //背包
    }
    int cnt = 0;
    int sum = i;
    int pos = n - 1;
    while(sum){                         //贪心
      while(sum >= a[pos]){
        sum -= a[pos];
        cnt ++;
      }
      pos--;
    }
    if(cnt > dp[i]) flag = 0; //不等就是不规范
  }
  if(flag) printf("canonical\n");
  else printf("non-canonical\n");
  return 0;
}

Canonical Coin Systems【完全背包】的更多相关文章

  1. upc组队赛6 Canonical Coin Systems【完全背包+贪心】

    Canonical Coin Systems 题目描述 A coin system S is a finite (nonempty) set of distinct positive integers ...

  2. uva674 Coin Change ——完全背包

    link:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA-674 Coin Change---完全背包

    题目链接: https://vjudge.net/problem/UVA-674 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 思路: 每 ...

  4. Light oj 1233 - Coin Change (III) (背包优化)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1233 题目就不说明了. 背包的二进制优化,比如10可以表示为1 2 4 3,而 ...

  5. [luoguP1474] 货币系统 Money Systems(背包)

    传送门 背包 ——代码 #include <cstdio> #include <iostream> #define LL long long int v, n; LL f[10 ...

  6. codeforces 284 E. Coin Troubles(背包+思维)

    题目链接:http://codeforces.com/contest/284/problem/E 题意:n种类型的硬币,硬币的面值可能相同,现在要在满足一些限制条件下求出,用这些硬币构成t面值的方案数 ...

  7. 【题解】coin HDU2884 多重背包

    题目 Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. 【洛谷】P1474 货币系统 Money Systems(背包dp)

    题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

  9. 算法入门经典大赛 Dynamic Programming

    111 - History Grading LCS 103 - Stacking Boxes 最多能叠多少个box DAG最长路 10405 - Longest Common Subsequence ...

随机推荐

  1. linux 系统全盘恢复

    恢复备份 一.准备 1. 从 u盘启动,进入 live-cd 系统,配置好网络和镜像源,更新一下仓库的数据库. sudo pacman -Syy 2. 安装 timeshift 这个软件. sudo ...

  2. git 的相关知识

    参考文章 git checkout HEAD <file> :  master/HEAD -> index -> work directory index 暂存区有两行信息.分 ...

  3. java学习之路--继承(多态的动态绑定)

    动态绑定过程中,对象调用对象方的执行过程 1:编译器查看对象的声明类型和方法名.有可能有多个方法名相同,但参数类型不一样的重载方法. 2:编译器查看调用方法时提供的参数类型.该过程叫重载解析,在相同的 ...

  4. LPVOID 没有类型的指针

    可以将LPVOID类型的变量赋值给任意类型的指针,比如在参数传递时就可以把任意类型传递给一个LPVOID类型为参数的方法,然后在方法内再将这个“任意类型”从传递时的“LPVOID类型”转换回来. 示例 ...

  5. Dubbo 分布式服务框架入门

    要想了解 Dubbo 是什么,我们不防先了解它有什么用.使用场景:比如我想开发一个网上商城项目,这个网上商城呢,比较复杂,分为 pc 端 web 管理后台,微信端销售公众号,那么我们分成四个项目,pc ...

  6. day13 十三、迭代器、生成器、枚举对象

    def my_generator(): print(1111) yield '结果1' print(2222) yield '结果2' print(3333) yield '结果3' print(44 ...

  7. mpdf中文开发使用文档附demo实例

    官网URL:http://www.mpdf1.com/mpdf/index.php github:https://github.com/mpdf/mpdf 官方开发手册,英文的:http://www. ...

  8. Mybatis 使用了哪些设计模式?

    https://mp.weixin.qq.com/s/ZTh4a-YST5RdIipHykWpPQ

  9. Cartographer源码阅读(9):图优化的前端——闭环检测

    约束计算 闭环检测的策略:搜索闭环,通过匹配检测是否是闭环,采用了分支定界法. 前已经述及PoseGraph的内容,此处继续.位姿图类定义了pose_graph::ConstraintBuilder ...

  10. python操作excel的读、计算、写----xlrd、copy

    import xlrd from xlutils.copy import copy class ExcelUtil: def __init__(self,excel_path=None,index=N ...