Description

很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系。

某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星球通过特殊的以太隧道互相直接或间接地连接。

但好景不长,很快帝国又重新造出了他的超级武器。凭借这超级武器的力量,帝国开始有计划地摧毁反抗军占领的星球。由于星球的不断被摧毁,两个星球之间的通讯通道也开始不可靠起来。

现在,反抗军首领交给你一个任务:给出原来两个星球之间的以太隧道连通情况以及帝国打击的星球顺序,以尽量快的速度求出每一次打击之后反抗军占据的星球的连通块的个数。(如果两个星球可以通过现存的以太通道直接或间接地连通,则这两个星球在同一个连通块中)。

Input

输入文件第一行包含两个整数,\(N (1 < = N < = 2M)\) 和 \(M (1 < = M < = 200,000)\),分别表示星球的数目和以太隧道的数目。星球用 \(0\)~\(N-1\) 的整数编号。

接下来的 \(M\) 行,每行包括两个整数 \(X\), \(Y\),其中( \(0 < = X <> Y\) 表示星球 \(x\) 和星球 \(y\) 之间有 “以太” 隧道,可以直接通讯。

接下来的一行为一个整数 \(k\) ,表示将遭受攻击的星球的数目。

接下来的 \(k\) 行,每行有一个整数,按照顺序列出了帝国军的攻击目标。这 \(k\)个数互不相同,且都在 \(0\) 到 \(n−1\) 的范围内。

Output

第一行是开始时星球的连通块个数。接下来的 \(K\) 行,每行一个整数,表示经过该次打击后现存星球的连通块个数。

维护联通块个数? 考虑并查集

但是正序不好做,因此我们考虑倒叙.(正难则反思想)

我们加入这些被破坏的点.

然后再去判断联通块个数,注意新加入一个点的话,如果没有联通,联通块个数要\(++\),如果还能和其他构成联通块,要\(--\)

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 500008
#define R register
using namespace std; inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int n,m,f[N],k;
int head[N],tot,ques[N],ans[N],cnt;
struct cod{int u,v;}edge[N<<2];
inline void add(R int x,R int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
bool bom[N];
int find(R int x){return f[x]==x?x:f[x]=find(f[x]);}
int main()
{
in(n),in(m);
for(R int i=1,x,y;i<=m;i++)
{
in(x),in(y);
x++,y++;
add(x,y),add(y,x);
}
in(k);
for(R int i=1,x;i<=k;i++)
{
in(x);x++;
bom[x]=true;
ques[i]=x;
}
for(R int i=1;i<=n;i++)f[i]=i;
cnt=n-k;
for(R int x=1;x<=n;x++)
{
if(bom[x])continue;
for(R int i=head[x];i;i=edge[i].u)
{
if(bom[edge[i].v])continue;
R int fu=find(x),fv=find(edge[i].v);
if(fu==fv)continue;
f[fu]=fv;cnt--;
}
}
ans[k+1]=cnt;
for(R int j=k;j>=1;j--)
{
R int x=ques[j];
bom[x]=false;cnt++;
for(R int i=head[x];i;i=edge[i].u)
{
if(bom[edge[i].v])continue;
R int fu=find(x),fv=find(edge[i].v);
if(fu==fv)continue;
f[fu]=fv;cnt--;
}
ans[j]=cnt;
}
for(R int i=1;i<=k+1;i++)
printf("%d\n",ans[i]);
}

并查集【p1197】[JSOI2008]星球大战的更多相关文章

  1. P1197 [JSOI2008]星球大战(并查集判断连通块+正难则反)

    P1197 [JSOI2008]星球大战(并查集判断连通块+正难则反) 并查集本来就是连一对不同父亲的节点就的话连通块就少一个. 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统 ...

  2. html5 canvas程序演示--P1197 [JSOI2008]星球大战

    html5 canvas程序演示--P1197 [JSOI2008]星球大战 <!doctype html> <html> <head> <meta char ...

  3. 洛谷P1197 [JSOI2008] 星球大战 [并查集]

    题目传送门 星球大战 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这 ...

  4. P1197 [JSOI2008]星球大战[并查集+图论]

    题目来源:洛谷 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球 ...

  5. P1197 [JSOI2008]星球大战 并查集 反向

    题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...

  6. Bzoj1015/洛谷P1197 [JSOI2008]星球大战(并查集)

    题面 Bzoj 洛谷 题解 考虑离线做法,逆序处理,一个一个星球的加入.用并查集维护一下连通性就好了. 具体来说,先将被消灭的星球储存下来,先将没有被消灭的星球用并查集并在一起,这样做可以路径压缩,然 ...

  7. 【反向并查集、联通图】P1197 [JSOI2008]星球大战

    题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...

  8. P1197 [JSOI2008]星球大战

    题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧道 ...

  9. Luogu P1197 [JSOI2008]星球大战 By cellur925

    题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...

  10. 洛谷P1197 [JSOI2008]星球大战

    题目 由于题目不要求强制在线,所以可以离线. 而离线的话就会带来许多便利,所以我们可以先处理出全部打击后的图,通过并查集来判断是否连通. 然后再从后往前枚举,得出答案 #include <bit ...

随机推荐

  1. 周记【距gdoi:110天】

    这两个星期都在复习和考试,进度慢了好多.(考试也觉得似乎不是很理想) 姚老要我们写个程序来应对学校的分班问题.然后我们就脑洞打开准备设计一个.写应用程序应该是很烧时间的吧? 接下来搞搞后缀数组,然后还 ...

  2. UDP收/发广播包原理及步骤

    原文链接地址:http://www.2cto.com/net/201311/254834.html UDP收/发广播包原理及步骤 如果网络中两个主机上的应用程序要相互通信,其一要知道彼此的IP,其二要 ...

  3. Nginx的火速蔓延与其并发性处理优势

    Nginx是俄罗斯人编写的十分轻量级的HTTP服务器.Nginx,它的发音为“engine X”, 是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP 代理服务器.Ngi ...

  4. 解决IIS设置多个工作进程中Session失效的问题

    利用StateServer实现Session共享 session保存在专门的StateServer中,该种方式,性能损失比sql略好.比inproc据说有10%-15%的性能损失.怎么使用StateS ...

  5. HDU1166 敌兵布阵(树状数组实现

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. java实现极简的LRU算法

    import java.util.LinkedHashMap;import java.util.Map; /** * LRU (Least Recently Used)  */public class ...

  7. webpack 的第三方库分离并持久化缓存

    我们常常需要在浏览器缓存一些稳定的资源,如第三方库等.要达到这个目标,只需要两步: 1.提取出“稳定的资源”: 2.提供稳定的文件hash . 处理后的出的文件就像这样子: app.1w3ad4q4. ...

  8. webpack3基础知识

    ## 本地化安装webpack ## 1. npm init //npm初始化生成package.json文件 2. npm install --save-dev webpack //安装webpac ...

  9. elementUi 组件--el-table

    [需求]在element中,将表格中的数据进行处理,然后渲染出来.例如,将数据保留小数点后两位显示. [知识点]formatter:用来格式化内容 [分析]在element 的table中,实现的过程 ...

  10. 【hdu2222-Keywords Search】AC自动机基础裸题

    http://acm.hust.edu.cn/vjudge/problem/16403 题意:给定n个单词,一个字符串,问字符串中出现了多少个单词.(若单词her,he,字符串aher中出现了两个单词 ...