【题目链接】 http://poj.org/problem?id=2315

【题目大意】

  两名球员轮流从N个球中挑出不多于M个射门,每个球半径都是R,离球门S。
  每次只能踢出L以内的距离。进最后一个球者胜,求谁有必胜策略?

【题解】

  我们发现对数据进行处理之后,题目等价于给出n堆石子,
  每堆石子中每次最多取k个石子,每次最多选取m个石子堆做操作的博弈问题
  首先我们将每堆石子堆对k+1取模简化运算,
  对于只能取一堆石子上的石子的做法我们是对所有的石子堆的sg值进行xor运算得到sg值
  xor又称为半加运算,只进行加法而不进位,
  对于选取m堆石子的博弈我们的xor则是对于m+1进制下的半加运算,
  所以我们按位计算这个sg值,模拟m+1进制下的半加运算即可得到答案。

【代码】

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int N=30;
const double PI=acos(-1.0);
int n,m,l,r,a[N],sg[N];
int dis(int s){return (int)(s/(2*PI*r))+1;}
bool solve(){
memset(sg,0,sizeof(sg));
int k=dis(l);
for(int i=0;i<n;i++)for(int j=0,g=dis(a[i])%k;sg[j]+=g&1,g;j++,g>>=1);
for(int i=0;i<30;i++)if(sg[i]%(m+1))return 1;
return 0;
}
int main(){
while(~scanf("%d%d%d%d",&n,&m,&l,&r)){
for(int i=0;i<n;i++)scanf("%d",&a[i]);
puts(solve()?"Alice":"Bob");
}return 0;
}

POJ 2315:Football Game(博弈论)的更多相关文章

  1. POJ 3071 Football

    很久以前就见过的...最基本的概率DP...除法配合位运算可以很容易的判断下一场要和谁比.    from——Dinic算法                         Football Time ...

  2. poj 3710 Christmas Game 博弈论

    思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...

  3. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  4. POJ 2975 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...

  5. POJ 2068 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2068 [题目大意] 给出两队人,交叉放置围成一圈,每个人能取的石子数有个上限,各不相同 轮流取石头,取到最后一块石头的队伍算输,问 ...

  6. POJ 3071 Football 【概率DP】

    Football Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3734   Accepted: 1908 ...

  7. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  8. poj 3071 Football <DP>

    链接:http://poj.org/problem?id=3071 题意: 有 2^n 支足球队,编号 1~2^n,现在给出每支球队打败其他球队的概率,问哪只球队取得冠军的概率最大? 思路: 设dp[ ...

  9. POJ 3071 Football:概率dp

    题目链接:http://poj.org/problem?id=3071 题意: 给定n,有2^n支队伍参加足球赛. 给你所有的p[i][j],表示队伍i打败队伍j的概率. 淘汰赛制.第一轮(1,2)两 ...

随机推荐

  1. 几个JavaScript的浏览器差异处理问题

    JQuery确实是个很好用的库,你可以不用考虑很多细节方面的事情.但很作为一个web前端,处理和了解浏览器差异一个重要问题.下面将介绍一些总结,先介绍没有使用js库的情况. 1. setAttribu ...

  2. git使用笔记(八)团队协作

    By francis_hao    Nov 24,2016       本文由 刘英皓 创作,采用 知识共享 署名-非商业性使用-相同方式共享 3.0 中国大陆 许可协议进行许可.欢迎转载,请注明出处 ...

  3. [poj 3436]最大流+输出结果每条边流量

    题目链接:http://poj.org/problem?id=3436 大力套kuangbin板过了orz #include<cstdio> #include<cstring> ...

  4. [bzoj 2818]欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...

  5. bzoj 4880 [Lydsy1705月赛]排名的战争 贪心

    [Lydsy1705月赛]排名的战争 Time Limit: 8 Sec  Memory Limit: 256 MBSubmit: 338  Solved: 69[Submit][Status][Di ...

  6. RPC-整体概念

    RPC概述 RPC(Remote Procedure Call),即远程过程调用,是一种通过网络从远程计算机程序上请求服务而不需要了解底层网络技术的协议,实现调用远程主机上的方法就像调用本地方法一样. ...

  7. cookie和session的区别与会话跟踪技术

    会话跟踪技术: HTTP是一种无状态协议,每当用户发出请求时,服务器就会做出响应,客户端与服务器之间的联系是离散的.非连续的.当用户在同一网站的多个页面之间转换时,根本无法确定是否是同一个客户,会话跟 ...

  8. Mac自带的SSH客户端

    https://segmentfault.com/q/1010000002806469 还能设置连接成持久连接,方便使用: ttps://www.zhihu.com/question/20541129 ...

  9. gcc升级方法

    https://www.cppfans.org/1719.html 默认链接到 /usr/local/bin/gcc,需要链接一下,替换默认的低版本 ln -s /usr/local/bin/gcc ...

  10. 微信网页版的onclick事件不起作用

    我的错误是在跳转的url中拼接了url,如下: var myBaseUrl="https://xxx/"; function do() { $.ajax({ url :myBase ...