【POJ 3169 Layout】
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 12565
Accepted: 6043
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Source
【题解】
①区间前缀和差分约束
②对于有解的问题dfs_SPFA很慢
③推荐双端队列和fread读入优化
#include<queue>
#include<stdio.h>
#define inf 1000000007
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
const int N=2003;bool inq[N];
struct E{int v,next,w;}e[N*200];
int n,X,Y,A,B,D,head[N],k=1,d[N],negative;
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;} inline char Getchar()
{
static char C[1000000],*p1,*p2;
if(p1==p2)p2=(p1=C)+fread(C,1,1000000,stdin);
if(p1==p2)return EOF;return *p1++;
} inline void Read(int &x)
{
x=0;char c=Getchar();
while(c<'0'||c>'9')c=Getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=Getchar();
} void Build()
{
go(i,1,X)Read(A),Read(B),Read(D),ADD(A,B,D);
go(i,1,Y)Read(A),Read(B),Read(D),ADD(B,A,-D);
go(i,2,n)ADD(i,i-1,0);
} std::queue<int>q;
void SPFA()
{
go(i,1,n)d[i]=inf;d[1]=0;q.push(1);int vis[N]={0};
while(!q.empty()){int u=q.front();q.pop();inq[u]=0;
fo(i,head,u)if(d[u]+e[i].w<d[v])
{
d[v]=d[u]+e[i].w;
if(++vis[v]>n){negative=1;return;}
!inq[v]?q.push(v),inq[v]=1:1;}
}
} int main()
{
Read(n);Read(X);Read(Y); Build(); SPFA(); if(negative){puts("-1");return 0;}
if(d[n]==inf){puts("-2");return 0;}
if(d[n]!=inf){printf("%d\n",d[n]);return 0;}
}//Paul_Guderian
.
【POJ 3169 Layout】的更多相关文章
- poj 3169 Layout (差分约束)
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
- POJ 3169 Layout 【差分约束】+【spfa】
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- POJ 3169.Layout 最短路
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11612 Accepted: 5550 Descripti ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...
- 【POJ 2572 Advertisement】
Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 947Accepted: 345Special Judge Description ...
- 【POJ 1201 Intervals】
Time Limit: 2000MSMeamory Limit: 65536K Total Submissions: 27949Accepted: 10764 Description You are ...
- POJ 3169 Layout (HDU 3592) 差分约束
http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...
随机推荐
- hive 学习系列五(hive 和elasticsearch 的交互,很详细哦,我又来吹liubi了)
hive 操作elasticsearch 一,从hive 表格向elasticsearch 导入数据 1,首先,创建elasticsearch 索引,索引如下 curl -XPUT '10.81.17 ...
- 阅读《大型网站技术架构》,并结合"重大需求征集系统"有感
今天阅读了<大型网站技术架构:核心原理与案例分析>的第五.六.七章.这三张主要是讲述了一个系统的可用性.伸缩性和可扩展性.而根据文中所讲述的,一个系统的可用性主要是体现在这个系统的系统服务 ...
- 1. tty终端接收数据原理
1. 串口接收数据原理(以“ls”命令为例) (1) 每个终端设备都有一个接收缓冲区,保存原始数据.shell程序一直在休眠,等待合适的字符: (2) 串口接收到'l'字符,把它保存下来: (3) 串 ...
- C语言:类型、运算符、表达式
看了一天书,有点累了.就写写随笔记录一下今天的复习成果吧. C语言的基本数据类型 数值型:整型数,浮点数,布尔数,复数和虚数. 非数值型:字符. 整数最基本的是int,由此引出许多变式诸如有符号整数s ...
- [转载]三小时学会Kubernetes:容器编排详细指南
原翻译by梁晓勇 原英文:Learn Kubernetes in Under 3 Hours: A Detailed Guide to Orchestrating Containers 我很奇怪,为什 ...
- spring+springmvc+maven+mongodb
1.前言 最近项目开发使用到了spring+springmvc+maven+mongodb,项目中的框架是用springboot进项开发的,对于我们中级开发人员来说,有利有弊,好处呢是springbo ...
- FreeRTOS任务暂停和启动函数
任务句柄 TaskHandle_t pump_task_handle = NULL; 任务的启动函数 if(eTaskGetState(pump_task_handle) != eRunning) v ...
- 创龙DSP6748开发板驱动LCD屏
1. DSP6748内部有2个LCD控制器,Raster Controller 光栅控制器和the LCD Interface Display Driver (LIDD) controller 控制器 ...
- loj2587 「APIO2018」铁人两项
圆方树orz,参见猫的课件(apio和wc的)以及这里那里 #include <iostream> #include <cstdio> using namespace std; ...
- 在spring+beranate中多数据源中使用 ThreadLocal ,总结的原理 --费元星
设计模式 首先,ThreadLocal 不是用来解决共享对象的多线程访问问题的,一般情况下,通过ThreadLocal.set() 到线程中的对象是该线程自己使用的对象,其他线程是不需要访问的,也访问 ...