Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 12565
Accepted: 6043

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

USACO 2005 December Gold

【题解】

      ①区间前缀和差分约束

      ②对于有解的问题dfs_SPFA很慢

      ③推荐双端队列和fread读入优化

#include<queue>
#include<stdio.h>
#define inf 1000000007
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
const int N=2003;bool inq[N];
struct E{int v,next,w;}e[N*200];
int n,X,Y,A,B,D,head[N],k=1,d[N],negative;
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;} inline char Getchar()
{
static char C[1000000],*p1,*p2;
if(p1==p2)p2=(p1=C)+fread(C,1,1000000,stdin);
if(p1==p2)return EOF;return *p1++;
} inline void Read(int &x)
{
x=0;char c=Getchar();
while(c<'0'||c>'9')c=Getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=Getchar();
} void Build()
{
go(i,1,X)Read(A),Read(B),Read(D),ADD(A,B,D);
go(i,1,Y)Read(A),Read(B),Read(D),ADD(B,A,-D);
go(i,2,n)ADD(i,i-1,0);
} std::queue<int>q;
void SPFA()
{
go(i,1,n)d[i]=inf;d[1]=0;q.push(1);int vis[N]={0};
while(!q.empty()){int u=q.front();q.pop();inq[u]=0;
fo(i,head,u)if(d[u]+e[i].w<d[v])
{
d[v]=d[u]+e[i].w;
if(++vis[v]>n){negative=1;return;}
!inq[v]?q.push(v),inq[v]=1:1;}
}
} int main()
{
Read(n);Read(X);Read(Y); Build(); SPFA(); if(negative){puts("-1");return 0;}
if(d[n]==inf){puts("-2");return 0;}
if(d[n]!=inf){printf("%d\n",d[n]);return 0;}
}//Paul_Guderian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

【POJ 3169 Layout】的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  7. 【POJ 2572 Advertisement】

    Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 947Accepted: 345Special Judge Description ...

  8. 【POJ 1201 Intervals】

    Time Limit: 2000MSMeamory Limit: 65536K Total Submissions: 27949Accepted: 10764 Description You are ...

  9. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

随机推荐

  1. thinkphp phpmailer邮箱验证

    thinkphp 关于phpmailer的邮箱验证 一  . 登陆自己的邮箱,例如:qq邮箱.登陆qq邮箱在账户设置中开启smtp服务: 之后回发送一个授权码 , 这个授权码先保存下来,这个授权码在后 ...

  2. MongoDB学习(1)--安装,基本curd操作

    知识点: 1-MongoDB 安装,启动和卸载 2-基本概念 3-基本的增删改查操作(CURD) 来回顾总结一把学习的mongodb,如果有javascript基础,学习"芒果DB" ...

  3. Scrapy框架的基本使用

    安装 pip install scrapy 基础使用 1. 创建一个工程:scrapy startproject 2. 在工程目录下创建一个爬虫文件 cd 工程 scrapy genspider 爬虫 ...

  4. go web处理上传

    要使表单能够上传文件,第一步就是添加form的enctype属性,enctype属性有如下三种情况: application/x-www-form-urlencoded 表示在发送前编码所有字符(默认 ...

  5. HyperLedger Fabric 1.4 超级账本起源(5.1)

    至比特币开源以来,无数技术人员对其进行研究,并且对该系统经过了无数次改进,超级账本项目(Hyperledger)最初也是用来改善比特币的底层技术,最终由Linux基金会组织发展起来.       开放 ...

  6. ionic 打包apk Failure [INSTALL_FAILED_USER_RESTRICTED: Install canceled by user]

    错误日志如下: Built the following apk(s): /Users/hongye0/Documents/project/haitoujiaApp/platforms/android/ ...

  7. 你真的了解React吗

    https://zhufengzhufeng.github.io/zhufengreact/index.html#t21.%E4%BB%80%E4%B9%88%E6%98%AFReact?

  8. FPGA数字鉴相鉴频器的开发记录

    1. 对于电机的锁相控制,需要对相差进行PI性质的环路滤波,但现有的锁相环中鉴频鉴相器输出为相差脉冲而非数字量,难以直接进行PI特性的环路滤波. 通过对晶振的非整数分频获取准确的参考时钟,基于触发器机 ...

  9. python基础——列表、字典

    Python核心数据类型--列表 列表是一个任意类型的对象的位置相关的有序集合,它没有固定的大小.大小可变的,通过偏移量进行赋值以及其他各种列表的方法进行调用,能够修改列表.其他更多的功能可以查阅py ...

  10. VM实例的生命周期管理

    有的操作功能比较类似,也有各自的适用场景,简单介绍下上述几个重要的操作: 常规操作: 常规操作中,Launch.Start.Reboot.Shut Off 和 Terminate 都很好理解. 下面几 ...