Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 12565
Accepted: 6043

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

USACO 2005 December Gold

【题解】

      ①区间前缀和差分约束

      ②对于有解的问题dfs_SPFA很慢

      ③推荐双端队列和fread读入优化

#include<queue>
#include<stdio.h>
#define inf 1000000007
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
const int N=2003;bool inq[N];
struct E{int v,next,w;}e[N*200];
int n,X,Y,A,B,D,head[N],k=1,d[N],negative;
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;} inline char Getchar()
{
static char C[1000000],*p1,*p2;
if(p1==p2)p2=(p1=C)+fread(C,1,1000000,stdin);
if(p1==p2)return EOF;return *p1++;
} inline void Read(int &x)
{
x=0;char c=Getchar();
while(c<'0'||c>'9')c=Getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=Getchar();
} void Build()
{
go(i,1,X)Read(A),Read(B),Read(D),ADD(A,B,D);
go(i,1,Y)Read(A),Read(B),Read(D),ADD(B,A,-D);
go(i,2,n)ADD(i,i-1,0);
} std::queue<int>q;
void SPFA()
{
go(i,1,n)d[i]=inf;d[1]=0;q.push(1);int vis[N]={0};
while(!q.empty()){int u=q.front();q.pop();inq[u]=0;
fo(i,head,u)if(d[u]+e[i].w<d[v])
{
d[v]=d[u]+e[i].w;
if(++vis[v]>n){negative=1;return;}
!inq[v]?q.push(v),inq[v]=1:1;}
}
} int main()
{
Read(n);Read(X);Read(Y); Build(); SPFA(); if(negative){puts("-1");return 0;}
if(d[n]==inf){puts("-2");return 0;}
if(d[n]!=inf){printf("%d\n",d[n]);return 0;}
}//Paul_Guderian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

【POJ 3169 Layout】的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  7. 【POJ 2572 Advertisement】

    Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 947Accepted: 345Special Judge Description ...

  8. 【POJ 1201 Intervals】

    Time Limit: 2000MSMeamory Limit: 65536K Total Submissions: 27949Accepted: 10764 Description You are ...

  9. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

随机推荐

  1. QQ群排名霸屏技术居然是这样简单

    最近做了一些收费的QQ群,收多少钱,一块钱的入门费,也就是说进入我的QQ群必须要1块钱的会费. 我的QQ群主要是干嘛呢,放些电影,比如说市面上电影院,正在播放的,最新最热门的,火爆的一些电影. 先前呢 ...

  2. 吐血分享:QQ群霸屏技术教程2017(活跃篇)

    热门词的群排名,在前期优化准备充分的情况下,活跃度不失为必杀技. 在<吐血分享:QQ群霸屏技术(初级篇)>中,我们提及到热门词的群排名,有了前面的基础,我们就可以进入深度优化,实现绝对的霸 ...

  3. laravel路由组+中间件

    在rotues中的web.php

  4. ruby Encoding

    一. 查看ruby支持的编码 Encoding.name_list 二. 搜索编码 Encoding.find('US-ASCII') #=> US-ASCII,不存在则抛出异常 三. __EN ...

  5. 【Hadoop】配置环境-伪分布式

    目录 1.Linux设置静态IP地址 2.修改主机名和映射文件 3.SSH免密码配置 4.Linux系统JDK的安装和配置 5.Hadoop伪分布式配置和测试 1.Linux设置静态IP地址 1.在L ...

  6. UVA10474 Where is the Marble?【排序】

    参考:https://blog.csdn.net/q547550831/article/details/51326321 #include <iostream> #include < ...

  7. SPFA算法(2) POJ 1511 Invitation Cards

    原题: Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 31230   Accepted: ...

  8. 如何将h5网页改成微信网页

    1.如何将h5网页改成微信网页 1.设置安全域名          先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”.         备注:登录后可在“开发者中心”查看对 ...

  9. shell -- shift用法

    shift是Unix中非常有用的命令.可以使命令参数左移,从而使脚本程序中命令参数位置不变的情况下依次遍历所有参数.如shift 3表示原来的$4现在变成$1,原来的$5现在变成$2等等,原来的$1. ...

  10. VHDL入门学习-程序组成

    1. VHDL程序的组成 一个完整的VHDL程序是以下五部分组成的: 2. 库(LIBRARY):比较好理解,调用系统已有的库,WORK库就是用户当前编辑文件所在的文件夹, IEEE库:由IEEE(美 ...