P1379 八数码难题

题目描述

在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。棋盘中留有一个空格,空格用0来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。

输入输出格式

输入格式:

输入初始状态,一行九个数字,空格用0表示

输出格式:

只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数(测试数据中无特殊无法到达目标状态数据)


虽然这个题没有用到,但还是提一下有解性判断

当棋盘长度是奇数时,有解等价于初始状态与目标状态的抽出来横着放的序列中逆序对个数的奇偶性相同

正常的解题思路:

用康托展开判重,用曼哈顿距离估价搜索

然而我最开始打的记搜wa的不行

最后终于想明白,有环记搜个锤子啊!!!

事实上状态量很少,直接广搜就可以


Code:

#include <cstdio>
#include <cstring>
const int N=1e6;
int s[10],fac[10],step[N],used[N],l,r;
int a[10]={0,2,3,4,9,1,5,8,7,6};
void add(int x){while(x<=9) ++s[x],x+=x&-x;}
int ask(int x){int su=0;while(x) su+=s[x],x-=x&-x;return su;}
struct node
{
int a[10];
}q[N];
int kanton(node x)
{
int ans=0;memset(s,0,sizeof(s));
for(int i=1;i<=9;i++)
ans+=fac[9-i]*(x.a[i]-1-ask(x.a[i])),add(x.a[i]);
return ans;
}
void swap(int &x,int &y){int tmp=x;x=y,y=tmp;}
int main()
{
fac[0]=1;node s;
for(int i=1;i<=9;i++) fac[i]=fac[i-1]*i,s.a[i]=a[i];
int to=kanton(s);
char c[10];scanf("%s",c+1);
for(int i=1;i<=9;i++) s.a[i]=c[i]-'0'+1;
q[0]=s;step[0]=0;
while(l<=r)
{
node now=q[l++];
int id=kanton(now),pos;
if(id==to) {printf("%d\n",step[l-1]);break;}
if(used[id]) continue;used[id]=1;
for(int i=1;i<=9;i++) if(now.a[i]==1) {pos=i;break;}
if(pos%3!=1)
{
node t=now;
swap(t.a[pos],t.a[pos-1]);
q[++r]=t,step[r]=step[l-1]+1;
}
if(pos%3)
{
node t=now;
swap(t.a[pos],t.a[pos+1]);
q[++r]=t,step[r]=step[l-1]+1;
}
if(pos>3)
{
node t=now;
swap(t.a[pos],t.a[pos-3]);
q[++r]=t,step[r]=step[l-1]+1;
}
if(pos<7)
{
node t=now;
swap(t.a[pos],t.a[pos+3]);
q[++r]=t,step[r]=step[l-1]+1;
}
}
return 0;
}

2018.8.30

洛谷 P1379 八数码难题 解题报告的更多相关文章

  1. 洛谷——P1379 八数码难题

    P1379 八数码难题 双向BFS 原来双向BFS是这样的:终止状态与起始状态同时入队,进行搜索,只不过状态标记不一样而已,本题状态使用map来存储 #include<iostream> ...

  2. 洛谷P1379八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中. 要求解的问题是:给出一种初始布局(初始状态)和目标布局(为 ...

  3. 洛谷 P1379 八数码难题 Label:判重&&bfs

    特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...

  4. 洛谷 P1379 八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了 ...

  5. 洛谷 - P1379 - 八数码难题 - bfs

    https://www.luogu.org/problemnew/show/P1379 #include <bits/stdc++.h> using namespace std; #def ...

  6. 洛谷—— P1379 八数码难题

    https://daniu.luogu.org/problem/show?pid=1379 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示 ...

  7. 洛谷 P1379 八数码难题(map && 双向bfs)

    题目传送门 解题思路: 一道bfs,本题最难的一点就是如何储存已经被访问过的状态,如果直接开一个bool数组,空间肯定会炸,所以我们要用另一个数据结构存,STL大法好,用map来存,直接AC. AC代 ...

  8. 洛谷P1379 八数码难题

    传送门 1.先用dfs枚举9!的全排列,存到hash数组里(类似离散化),因为顺序枚举,就不需要排序了 2.朴素bfs,判重就用二分找hash:如果发现当前状态=要求状态,输出步数结束程序 上代码 # ...

  9. 洛谷 P1379 八数码难题 题解

    我个人感觉就是一道bfs的变形,还是对bfs掌握不好的人有一定难度. 本题思路: 大体上用bfs搜,用map来去重,在这里只需要一个队列,因为需要较少步数达到的状态一定在步数较多的状态之前入队列. # ...

随机推荐

  1. Centos6 Ruby 1.8.7升级至Ruby 2.3.1的方法

    本文章地址:https://www.cnblogs.com/erbiao/p/9117018.html#现在的版本 [root@hd4 /]# ruby --version ruby (-- patc ...

  2. phpstudy启动时Apache启动不了

    打开cmd,输入:D:\phpStudy\PHPTutorial\Apache\bin\httpd.exe -t 回车,即显示错误信息 说是我们的有一个文件目录不存在或者不可读取, 出现这个一般有两种 ...

  3. Python入门学习笔记4:他人的博客及他人的学习思路

    看其他人的学习笔记,可以保证自己不走弯路.并且一举两得,即学知识又学方法! 廖雪峰:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958 ...

  4. YUM工具使用

    一.yum命令概述: 1.简介: yum命令时在Fedora和RedHat以及SUSE中基于rpm的软件包管理器,它可以使系统管理人员交互和自动化地更细与管理RPM软件包,能够从指定的服务器自动下载R ...

  5. 002---Python基本数据类型--字符串

    字符串 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1p ...

  6. python基础之反射、面向对象进阶

    isinstance(obj,cls)和issubclass(sub,super) isinstance(obj,cls)检查是否obj是否是类 cls 的对象,如果是返回True 1 class F ...

  7. python os模块atime ,ctime,mtime意义

    ython的os.stat中主要的时间信息有三个:st_mtime,st_atime,st_ctime.   1.st_mtime:time of last modification      最后一 ...

  8. android开源项目之OTTO事件总线(一)

    Otto是由Square发布的一个着重于Android支持的基于Guava的强大的事件总线,在对应用程序不同部分进行解耦之后,仍然允许它们进行有效的沟通. 开源项目地址:https://github. ...

  9. loadrunner创建测试脚本运行无响应 不记录脚本

    解决一运行User Generator直接程序卡死无响应的办法. (1)“我的电脑”点右键->属性->高级 点选“性能”中的“设置” (2)打开对话框后,进入“数据执行保护”,如果空白框中 ...

  10. Windows模拟linux终端工具Cmder+Gow

    1. 说明 Cmder:Windows下的终端模拟器. Gow: Windows下模拟Linux命令行工具集合.可以在windows执行linux下的大部分命令,如ls.grep.xargs等. 2. ...