A. Minimizing the String
time limit per test

1 second

memory limit per test

256 megabytes

Description:

You are given a string ss consisting of nn lowercase Latin letters.

You have to remove at most one (i.e. zero or one) character of this string in such a way that the string you obtain will be lexicographically smallest among all strings that can be obtained using this operation.

String s=s1s2…sns=s1s2…sn is lexicographically smaller than string t=t1t2…tmt=t1t2…tm if n<mn<m and s1=t1,s2=t2,…,sn=tns1=t1,s2=t2,…,sn=tn or there exists a number pp such that p≤min(n,m)p≤min(n,m) and s1=t1,s2=t2,…,sp−1=tp−1s1=t1,s2=t2,…,sp−1=tp−1 and sp<tpsp<tp .

For example, "aaa" is smaller than "aaaa", "abb" is smaller than "abc", "pqr" is smaller than "z".

Input

The first line of the input contains one integer nn (2≤n≤2⋅1052≤n≤2⋅105 ) — the length of ss .

The second line of the input contains exactly nn lowercase Latin letters — the string ss .

Output

Print one string — the smallest possible lexicographically string that can be obtained by removing at most one character from the string ss .

Examples
Input
3 aaa
 
Output
aa
 
Input

5
abcda
 
Output
abca
 
Note

In the first example you can remove any character of ss to obtain the string "aa".

In the second example "abca" < "abcd" < "abcda" < "abda" < "acda" < "bcda".

题意:

在序列中至多删去一个数,使得操作后得序列最小(与执行相同操作的其它序列相比)

题解:

通过模拟一下这个过程可以发现我们要找 i 这个位置,满足si>si+1&&i<n 或者直接i=n。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std; const int N = 2e5+;
char s[N];
int n; int main(){
scanf("%d",&n);getchar();
for(int i=;i<=n;i++) scanf("%c",&s[i]);
int i,pos=n;
for(i=;i<n;i++){
int j=i+;
if(s[j]<s[i]){
pos=i;
break ;
}
}
for(int i=;i<=n;i++){
if(i==pos) continue ;
printf("%c",s[i]);
}
return ;
}
B. Divisor Subtraction
time limit per test

2 seconds

memory limit per test

256 megabytes

Description:

You are given an integer number nn. The following algorithm is applied to it:

  1. if n=0, then end algorithm;
  2. find the smallest prime divisor d of n;
  3. subtract d from n and go to step 1.

Determine the number of subtrations the algorithm will make.

Input

The only line contains a single integer nn (2≤n≤10102≤n≤1010).

Output

Print a single integer — the number of subtractions the algorithm will make.

Examples
Input
5
Output
1
 
Input
4
Output
2
 
Note

In the first example 5 is the smallest prime divisor, thus it gets subtracted right away to make a 0.

In the second example 2 is the smallest prime divisor at both steps.

题意:

找n最小的质因子d,然后减去d,不断 重复这一过程直到n=0。

题解:

n为偶数很容易。当n为奇数时,质因子必为奇数,减去后也为偶数。所以问题的关键就是当n为奇数的情况。

最后发现只要找到一个最小的d,使得n%d==0就可以了,不管d是否为质数。

我当时没考虑到这一点,所以代码有点丑陋。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; long long n; inline int prim(int x){
int flag = ;
for(int i=;i<=sqrt(x+0.5)+;i++){
if(x%i==){
flag=;break ;
}
}
return flag;
} int main(){
scanf("%lld",&n);
if(n%==){
printf("%lld",n/);return ;
}
if(prim(n)){
printf("");return ;
}
for(int i=;i<=sqrt(n+0.5)+;i++){
if(n%i== && prim(i)){
printf("%lld",+(n-i)/);
return ;
}
}
return ;
}
C. Meme Problem
time limit per test

1 second

memory limit per test

256 megabytes

Try guessing the statement from this picture:

You are given a non-negative integer dd . You have to find two non-negative real numbers aa and bb such that a+b=d and a⋅b=d .

Input

The first line contains tt (1≤t≤1031≤t≤103 ) — the number of test cases.

Each test case contains one integer d (0≤d≤103) .

Output

For each test print one line.

If there is an answer for the i -th test, print "Y", and then the numbers a and b .

If there is no answer for the i -th test, print "N".

Your answer will be considered correct if |(a+b)−a⋅b|≤10−6|(a+b)−a⋅b|≤10−6 and |(a+b)−d|≤10−6|(a+b)−d|≤10−6 .

 
Example
Input
7
69
0
1
4
5
999
1000
Output
Y 67.985071301 1.014928699
Y 0.000000000 0.000000000
N
Y 2.000000000 2.000000000
Y 3.618033989 1.381966011
Y 997.998996990 1.001003010
Y 998.998997995 1.00100200
题意:
给出一个数d,找两个数x,y,满足x+y=d 并且x*y=d。
 
题解:
我用的是二分,当时好像证明了二分的正确性。但实际上有更简单的数学方法,就是利用x+y=d,x*y=d这两个等式(韦达定理),变换一下可以解一个方程。
 
我还是给出我的二分代码吧。。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std; int t,n;
double eps = 1e-; int main(){
scanf("%d",&t);
while(t--){
scanf("%d",&n);
if(n==){
printf("Y 0.000000000 0.000000000\n");
continue ;
}else if(n== || n== ||n==){
printf("N\n");continue;
}else if(n==){
printf("Y 2.000000000 2.000000000\n");
continue ;
}else{
double l = ,r=,mid,Ans,tmp;
while(l<=r){
mid=(l+r)/;
tmp = n-mid;
if(abs(tmp*mid-tmp-mid)<eps || abs(tmp*mid-n)<eps){
Ans=mid;break;
}
if(tmp*mid-tmp-mid<) l=mid+0.0000000001;
else r=mid-0.0000000001;
}
printf("Y %.9lf %.9lf\n",n-Ans,Ans);
}
} return ;
}
D. Edge Deletion
time limit per test

2.5 seconds

memory limit per test

256 megabytes

Description:

You are given an undirected connected weighted graph consisting of nn vertices and mm edges. Let's denote the length of the shortest path from vertex 11 to vertex ii as didi .

You have to erase some edges of the graph so that at most kk edges remain. Let's call a vertex ii good if there still exists a path from 11 to ii with length didi after erasing the edges.

Your goal is to erase the edges in such a way that the number of good vertices is maximized.

Input

The first line contains three integers nn , mm and kk (2≤n≤3⋅1052≤n≤3⋅105 , 1≤m≤3⋅1051≤m≤3⋅105 , n−1≤mn−1≤m , 0≤k≤m0≤k≤m ) — the number of vertices and edges in the graph, and the maximum number of edges that can be retained in the graph, respectively.

Then mm lines follow, each containing three integers xx , yy , ww (1≤x,y≤n1≤x,y≤n , x≠yx≠y , 1≤w≤1091≤w≤109 ), denoting an edge connecting vertices xx and yy and having weight ww .

The given graph is connected (any vertex can be reached from any other vertex) and simple (there are no self-loops, and for each unordered pair of vertices there exists at most one edge connecting these vertices).

Output

In the first line print ee — the number of edges that should remain in the graph (0≤e≤k0≤e≤k ).

In the second line print ee distinct integers from 11 to mm — the indices of edges that should remain in the graph. Edges are numbered in the same order they are given in the input. The number of good vertices should be as large as possible.

Examples
Input

3 3 2
1 2 1
3 2 1
1 3 3
Output
2
1 2
 
Input

4 5 2
4 1 8
2 4 1
2 1 3
3 4 9
3 1 5
Output
2
3 2
 
题意:
这个复制粘贴过来好像有点问题...将就看吧。
题目的要求就是可以留下最多k条边,使得最后的图中所有的点的最小距离都跟未删边一样。
 
题解:
题解还是好像,但是代码实现起来坑了我好久...
这题spfa会被卡,所以用了dijsktra。
我们可以发现,最短的最短路径树就是答案,然后记录结果的时候就当点从优先队列里面取出来的时候记录就可以了,因为Dijsktra中,点取出来的时候就是当前最小距离。
 
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <vector>
#define INF 1e18
using namespace std; typedef long long LL;
typedef pair<LL,int> pli;
typedef pair<int,int> pii; const int N = 3e5+;
int n,m,k;
int vis[N]={};
LL d[N];
pli pre[N];
vector<pair<int,pii> > vec[N];
vector<int> ans ;
void Dij(int x){
fill(d,d+n+,INF);d[x]=0ll;
priority_queue<pli,vector<pli>,greater<pli> > q;
q.push(make_pair(d[x],x));
while(!q.empty()){
pli now = q.top();q.pop();
int u = now.second;
if(vis[u]) continue ;
vis[u]=;
for(int i=;i<vec[u].size();i++){
int v = vec[u][i].second.first;
if(d[v]>d[u]+vec[u][i].second.second &&!vis[v]){
d[v]=d[u]+vec[u][i].second.second;
pre[v]=make_pair(u,vec[u][i].first);
q.push(make_pair(d[v],v));
}
}
}
}
queue <int> que ;
void bfs(int x,int K){
que.push(x);
while(!que.empty() && K){
int u = que.front();que.pop();
for(int i=;i<vec[u].size();i++){
int v = vec[u][i].second.first ;
if(d[v]==d[u]+vec[u][i].second.second){
que.push(v);
ans.push_back(vec[u][i].first);
K--;
}
if(!K) break ;
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=,u,v,c;i<=m;i++){
scanf("%d%d%d",&u,&v,&c);
vec[u].push_back(make_pair(i,make_pair(v,c)));
vec[v].push_back(make_pair(i,make_pair(u,c)));
}
Dij();
bfs(,k);
printf("%d\n",ans.size());
for(int i=;i<ans.size();i++) printf("%d ",ans[i]);
return ;
}
 

Educational Codeforces Round 54 (Rated for Div. 2) ABCD的更多相关文章

  1. Educational Codeforces Round 54 (Rated for Div. 2) D:Edge Deletion

    题目链接:http://codeforces.com/contest/1076/problem/D 题意:给一个n个点,m条边的无向图.要求保留最多k条边,使得其他点到1点的最短路剩余最多. 思路:当 ...

  2. Educational Codeforces Round 54 [Rated for Div. 2] (CF1076)

    第一次在宿舍打CF 把同宿舍的妹子吵得不行... 特此抱歉QAQ A 题意:给定一个字符串, 最多删掉一个字符,使得剩余字符串字典序最小 n<=2e5 当然"最多"是假的 删 ...

  3. Educational Codeforces Round 54 (Rated for Div. 2) Solution

    A - Minimizing the String solved 题意:给出一个字符串,可以移掉最多一个字符,在所有可能性中选取一个字典序最小的. 思路:显然,一定可以移掉一个字符,如果移掉的字符的后 ...

  4. Educational Codeforces Round 54 (Rated for Div. 2) DE

    D 给出一个无向图,需要删去一些边,想知道最后能有多少个点到1的距离还是过去那么短 如果求一个最短路,然后从删边的角度看,看起来很难做,但是如果从零开始加边就会有做法,如同prim那样,先加入和1直接 ...

  5. Educational Codeforces Round 54 (Rated for Div. 2) D Edge Deletion (SPFA + bfs)

    题目大意:给定你一个包含n个点m条边的无向图,现在最多在图中保留k条边,问怎么删除多的边,使得图中良好的节点数最多,求出保留在图中的边的数量和编号. 良好的节点定义为:删除某条边后该点到点1的最短距离 ...

  6. Educational Codeforces Round 56 (Rated for Div. 2) ABCD

    题目链接:https://codeforces.com/contest/1093 A. Dice Rolling 题意: 有一个号数为2-7的骰子,现在有一个人他想扔到几就能扔到几,现在问需要扔多少次 ...

  7. Educational Codeforces Round 72 (Rated for Div. 2)-D. Coloring Edges-拓扑排序

    Educational Codeforces Round 72 (Rated for Div. 2)-D. Coloring Edges-拓扑排序 [Problem Description] ​ 给你 ...

  8. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  9. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

随机推荐

  1. ant + jmeter 自动化接口测试环境部署

    1.jdk下载安装 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.jmeter下载 jmeter官 ...

  2. PublicCMS 网站漏洞 任意文件写入并可提权服务器权限

    PublicCMS是目前网站系统中第一个采用JAVA架构 TOMCAT+Apcche+Mysql数据库架构的CMS网站,开源,数据承载量大,可以承载到上千万的数据量,以及用户的网站并发可达到上千万的P ...

  3. 嵌入式linux系统移植(一)

    内容:   交叉编译环境   bootloader功能子系统   内核核心子系统   文件系统子系统要点:  搭建交叉编译环境  bootloader的选择和移植  kernel的配置.编译.移植和调 ...

  4. HDU1209:Clock

    参考:https://blog.csdn.net/libin56842/article/details/8990530 https://blog.csdn.net/u011479875/article ...

  5. 汇编实验14:访问CMOS RAM

    汇编实验14:访问CMOS RAM 任务 编程,以“年/月/日 时:分:秒”的格式,显示当前的日期,时间. 预备知识 CMOS存储当前时间的信息:年.月.日.时.分.秒.这六个信息的长度均为1个字节, ...

  6. (转载)深入super,看Python如何解决钻石继承难题

    1.   Python的继承以及调用父类成员 python子类调用父类成员有2种方法,分别是普通方法和super方法 假设Base是基类 class Base(object): def __init_ ...

  7. 线上环境HBASE-1.2.0出现oldWALs无法自动回收情况;

    正常情况下,hmaster会定期清理oldWALs文件夹,一般该文件大小也就几百兆,但是我们线上 环境出现了该文件没有自动回收情况,如图: 该目录占用hdfs空间多达7.6T,浪费空间: 后来经过多番 ...

  8. Fiddler 发送post 请求失败

    今天服务端同事,让我发一个post 请求.然后呢,一直有问题.告诉我签名失败. 后来换了其他的在线模拟post,都是可以的. 后来找到原因了, post 请求,必须要有Content-Type 和 C ...

  9. C#获取网络图片

    简单获取图片 string url = zhi_txt.Text;//图片地址 string dizhi = lujing.Text;//图片下载后保存路径及图片名称要写在一块 WebClient w ...

  10. Lua工具类

    1.打印table --一个用以打印table的函数 function print_r (t, name) print(pr(t,name)) end function pr (t, name, in ...