题目描述

某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入输出格式

输入格式:

第一行一个整数N。(1<=N<=6000)

接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)

接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。

最后一行输入0 0

输出格式:

输出最大的快乐指数。

输入输出样例

输入样例#1:
复制

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出样例#1: 复制

5

经典的树形dp; dp[x][0] 表示x的子树,不选 x 所能得到的最大值;

dp[x][1]表示选 x 得到的最大值;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n;
int hp[maxn];
int dp[maxn][2];
vector<int>vc[maxn];
bool fg[maxn];
int rt;
int ans; void dfs(int root) {
dp[root][0] = 0; dp[root][1] = hp[root];
for (int i = 0; i < vc[root].size(); i++) {
int v = vc[root][i];
dfs(v);
dp[root][0] += max(dp[v][0], dp[v][1]);
dp[root][1] += dp[v][0];
}
return;
} int main()
{
//ios::sync_with_stdio(0);
n = rd();
for (int i = 1; i <= n; i++)hp[i] = rd();
for (int i = 1; i < n; i++) {
int u, v; u = rd(); v = rd();
vc[v].push_back(u); fg[u] = 1;
}
int x, y; x = rd(); y = rd();
for (int i = 1; i <= n; i++) {
if (!fg[i]) {
rt = i; break;
}
}
dfs(rt);
printf("%d\n", max(dp[rt][0], dp[rt][1]));
return 0;
}

没有上司的舞会 树形dp的更多相关文章

  1. [luogu]P1352 没有上司的舞会[树形DP]

    本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...

  2. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  3. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  4. CodeVS1380 没有上司的舞会 [树形DP]

    题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...

  5. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  6. P1352 没有上司的舞会[树形dp]

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  7. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  8. 洛谷 P1352 没有上司的舞会 树形DP板子

    luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...

  9. 【codevs1380】没有上司的舞会 树形dp

    题目描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现在有个周年庆宴会,要求与会职员的快乐指数 ...

随机推荐

  1. Logstash安装和设置(图文详解)(多节点的ELK集群安装在一个节点就好)

    前提 Elasticsearch-2.4.3的下载(图文详解) Elasticsearch-2.4.3的单节点安装(多种方式图文详解) Elasticsearch-2.4.3的3节点安装(多种方式图文 ...

  2. 分析比较多表查询中的IN与JOIN

    IN 是子查询的关键字,JOIN 是连接的关键字,项目开发中经常会使用到多表查询,而子查询与连接正是实现多表查询的重要途径.那两者是怎么运行的?IN与JOIN哪个更好?下面就来分析与比较. 现在有te ...

  3. Ubuntu 17.04 允许使用root ssh登录

    用ubuntu 17.04部署完docker后,用winscp去管理系统上的文件发现默认的管理员账号权限不够,想重新用root登录,发现一只被服务器拒绝(permission denied).已经执行 ...

  4. 【原】Coursera—Andrew Ng机器学习—Week 4 习题—Neural Networks 神经网络

    [1] Answer:C [2] Answer:D 第二层要输出四个元素a1 a2 a3 a4.输入x有两个,加一个x0是三个.所以是4 * 3 [3] Answer:C [4] Answer:C [ ...

  5. 【转】浏览器中F5和CTRL F5的行为区别

    原文地址:http://www.cnblogs.com/jiji262/p/3410518.html 前言 在印象中,浏览器中的F5和刷新按钮是一样的效果,都是对当前页面进行刷新:Ctrl-F5的行为 ...

  6. POI技术

    1.excel左上角有绿色小图标说明单元格格式不匹配 2.模板中设置自动计算没效果,需要加上sheet.setForceFormulaRecalculation(true); FileInputStr ...

  7. CMake代码示例

    CMake代码示例(注:此文只贴了部分示例代码,详细文章见最后参考文章): 1.为工程和可执行文件指定一个版本号. 虽然可以在源代码中唯一指定它,但是在CMakeLists文件中指定它可以提供更好的灵 ...

  8. Map集合的关联数组实现

    public class AssoiativeArray<K,V>{ //创建一个二维数组 private Object[][] pairs; //声明索引 private int ind ...

  9. FractalNet(分形网络)

    -Argues that key is transitioning effectively from shallow to deep and residual representations are ...

  10. TensorFlow安装教程

    Windows7 安装TensorFlow(本人试了好多方法后的成果):https://www.cnblogs.com/bxyan/p/6869237.html Linux: sudo pip ins ...