关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解: 
假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6, 6, 4],求这个数组的最长递增子序列。 
首先定义一个数组arrayOut[1-10]来逐个寻找arrayIn[1-10]中以第i个元素结尾的最长递增子序列的长度。 
定义len来计算相应的长度 
(1)将arrayIn[1]放入arrayOut,此时arrayOut[1]=arrayIn[1]=2,此时len=1; 
(2)将arrayIn[2]放入arrayOut,此时要先寻找arrayIn[2]应该放入的位置,由于arrayIn[2]=3>arrayOut[1]=2,那么arrayIn[2]应该放入的位置为arrayOut[2],这时arrayOut[2]=arrayIn[2]=3,此时len=2; 
(3)将arrayIn[3]放入arrayOut,此时要先寻找arrayIn[3]应该放入的位置,由于arrayIn[3]=3=arrayOut[2]=3,那么arrayIn[3]应该放入的位置为arrayOut[2],这时arrayOut[2]=arrayIn[3]=3,即此时进来的arrayIn[3]替换掉了arrayOut[2],此时len仍然为2; 
(4)对数组arrayIn的后续元素执行以上类似的操作即 
如果arrayIn要放入的元素比arrayOut最后一个元素大的话就放在其后; 
否则寻找一个替换的位置 
这样以来arrayIn元素放入的位置即为len的值,然后判断这次得到的len值与上次的len值的大小,向大的方向更新即可。 
使用二分法来查找arrayIn元素应该放入的位置即可将时间复杂度降为O(nlogn)。 
以下为具体的实现代码(java)

import java.util.Arrays;
import java.util.Random; public class LISUpdate { public static void main(String[] args){ System.out.println("Generating a random array...");
LISUpdate lisUpdate=new LISUpdate();
int[] oldArray=new int[10];
oldArray=lisUpdate.randomArray();
System.out.println(Arrays.toString(oldArray)); //输出生成的随机数组
System.out.println("each LIS array:"); //输出每次计算时arrayOut数组的内容,便于观察
System.out.println("LIS length nlogn is:"+lisUpdate.getLength(oldArray)); //输出最长递增子序列的长度
} public int[] randomArray(){ //生成一个10以内的数组,长度为10
Random random=new Random();
int[] randomArray=new int[10];
for (int i = 0; i < 10; i++) {
randomArray[i]=random.nextInt(10);
} return randomArray;
} public int BinarySearchPosition(int arrayOut[],int left,int right,int key){ //二分查找要替换的位置 int mid; if (arrayOut[right]<key) {
return right+1;
}else {
while(left<right){
mid=(left+right)/2;
if (arrayOut[mid]<key) {
left=mid+1;
}else {
right=mid;
}
}
return left;
} } public int getLength(int[] arrayIn){ //获取最长递增子序列的长度 int position;
int len=1; int[] arrayOut=new int[arrayIn.length+1];//arrayOut[0]没有存放数据
arrayOut[1]=arrayIn[0]; //初始化,长度为1的LIS末尾为arrayIn[0]
for (int i = 1; i < arrayIn.length; i++) {
position=BinarySearchPosition(arrayOut, 1, len, arrayIn[i]);
arrayOut[position]=arrayIn[i];
System.out.println(Arrays.toString(arrayOut));
if (len<position) {
len=position;
}
} return len;
}

需要注意的是:上面代码中输出的arrayOut数组并不是最长递增子序列,我这里选择将其输出只是为了验证算法的执行过程。

对于求最长递减子序列,则可以直接将原数组进行“反转”操作,然后求出反转之后的数组的最长递增子序列的长度即为最长递减子序列的长度。

最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现的更多相关文章

  1. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  2. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  3. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  4. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  5. 最长递增子序列LIS再谈

    DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...

  6. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  7. 算法之动态规划(最长递增子序列——LIS)

    最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...

  8. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  9. POJ 1836 Alignment 最长递增子序列(LIS)的变形

    大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...

随机推荐

  1. STM32 USB虚拟串口

    串口调试在项目中被使用越来越多,串口资源的紧缺也变的尤为突出.很多本本人群,更是深有体会,不准备一个USB转串口工具就没办法进行开发.本章节来简单概述STM32低端芯片上的USB虚拟串口的移植.在官方 ...

  2. [POI2009]Wie

    题目 BZOJ 虽然是解压题但也学到了简洁的码风 做法 \(dijkstra\)跑动规 My complete code #include<bits/stdc++.h> #include& ...

  3. Go panic recover

    panic 1. 停止当前函数执行 2. 一直向上返回,执行每一层的defer 3. 如果没有遇到recover, 程序退出 recover 1. 仅在defer调用中使用 2. 获取panic的值 ...

  4. Windows 端口和所提供的服务

    一 .端口大全 端口:0 服务:Reserved 说明:通常用于分析操作系统.这一方法能够工作是因为在一些系统中“0”是无效端口,当你试图使用通常的闭合端口连接它时将产生不同的结果.一种典型的扫描,使 ...

  5. Phoenix表和索引分区数对插入和查询性能的影响

    1. 概述 1.1 HBase概述 HBase由master节点和region server节点组成.在100-105集群上,100和101是master节点,102-105是region serve ...

  6. Java -- JDBC 批处理

    两种批处理方式: 采用Statement.addBatch(sql)方式实现批处理: •优点:可以向数据库发送多条不同的SQL语句. •缺点: •SQL语句没有预编译. •当向数据库发送多条语句相同, ...

  7. 调试OpenStack时遇到的主要问题(by quqi99)

    作者:张华  发表于:2014-11-09版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 ( http://blog.csdn.net/quqi99 ) 今天想 ...

  8. rsync工具

    rsync工具 一.介绍 1.可以实现 本地数据 <----------> 远程数据/本地数据  的传输 2.两种通信方式(man rsync)  (1)remote shell(一个冒号 ...

  9. Java String.split()用法小结(转载)

    在java.lang包中有String.split()方法,返回是一个数组 我在应用中用到一些,给大家总结一下,仅供大家参考: 1.如果用“.”作为分隔的话,必须是如下写法,String.split( ...

  10. spring:使用会话和请求作用域

    在Web应用中,如果能够实例化在会话和请求范围内共享的bean,那将是非常有价值的事情.例如,在典型的电子商务应用中,可能会有一个bean代表用户的购物车.如果购物车是单例的话,那么将会导致所有的用户 ...