【bzoj1260】[CQOI2007]涂色paint 区间dp
题目描述
给出一个序列,每次可以给一段染成同一种颜色,问最少要染多少次能够染成给定方案。
输入
输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。
输出
仅一行,包含一个数,即最少的涂色次数。
样例输入
RGBGR
样例输出
3
题解
区间dp
设$f[i][j]$表示染$[i,j]$这段区间所需要的最小次数。
那么当$i$和$j$颜色相同时,显然需要一起染,可以推知$f[i][j]=min(f[i-1][j+1]+1,min(f[i+1][j],f[i][j-1]))$
当$i$和$j$颜色不同时,不能一起染,枚举中间点$k$,相当于染$[i,k]$和$[k+1,j]$两端区间,那么$f[i][j]=min\{f[i][k]+f[k+1][j]\}$
时间复杂度$O(n^3)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 55
using namespace std;
int f[N][N];
char str[N];
int main()
{
int n , i , j , k , l;
scanf("%s" , str + 1) , n = strlen(str + 1);
memset(f , 0x3f , sizeof(f));
for(i = 1 ; i <= n ; i ++ ) f[i][i] = 1;
for(l = 2 ; l <= n ; l ++ )
{
for(i = 1 ; i <= n - l + 1 ; i ++ )
{
j = i + l - 1;
if(str[i] != str[j])
for(k = i ; k < j ; k ++ )
f[i][j] = min(f[i][j] , f[i][k] + f[k + 1][j]);
else f[i][j] = min(f[i][j] , min(f[i + 1][j - 1] + 1 , min(f[i + 1][j] , f[i][j - 1])));
}
}
printf("%d\n" , f[1][n]);
return 0;
}
【bzoj1260】[CQOI2007]涂色paint 区间dp的更多相关文章
- [BZOJ1260][CQOI2007]涂色paint 区间dp
1260: [CQOI2007]涂色paint Time Limit: 30 Sec Memory Limit: 64 MB Submit: 1575 Solved: 955 [Submit][S ...
- 【BZOJ-1260】涂色paint 区间DP
1260: [CQOI2007]涂色paint Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 1147 Solved: 698[Submit][Sta ...
- BZOJ 1260: [CQOI2007]涂色paint( 区间dp )
区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...
- B1260 [CQOI2007]涂色paint 区间dp
这个题和我一开始想的区别不是很大,但是要我独自做出来还是有一些难度. 每一次涂色 只有这两种可能: 1) 把一段未被 覆盖过的区间 涂成 * 色 2) 把一段被一种颜色覆盖的区间涂成 * 色 (并且 ...
- CQOI2007 涂色 paint (区间dp)
听说这道题是当年省选题 于是兴致勃勃拿来做了做 至于如何想到思路... 事实上没想象中那么简单... 脑阔挺疼的... (一开始都没看出来是区间dp) 想到可以区间dp,然后就似乎没啥大问题 枚举区间 ...
- BZOJ1260 CQOI2007 涂色paint 【区间DP】
BZOJ1260 CQOI2007 涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...
- bzoj千题计划185:bzoj1260: [CQOI2007]涂色paint
http://www.lydsy.com/JudgeOnline/problem.php?id=1260 区间DP模型 dp[l][r] 表示涂完区间[l,r]所需的最少次数 从小到大们枚举区间[l, ...
- 2018.09.17 bzoj1260: [CQOI2007]涂色paint(区间dp)
传送门 区间dp简单题啊. 很显然用f[l][r]f[l][r]f[l][r]表示把区间[l,r][l,r][l,r]按要求染好的代价. 这样可以O(n)O(n)O(n)枚举断点转移了啊. 显然如果断 ...
- BZOJ1260 [CQOI2007]涂色paint 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1260 题意概括 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂 ...
随机推荐
- Ehcache基于java API实现
上代码: package com.utils.cacheutils; import com.situopenapi.constant.EhcacheConstants; import com.situ ...
- eclipse全选包
按住shift键,点击第一个jar包,然后点击最后一个jar包,就全选了所有jar包,然后添加build path 添加到类路径
- python七类之字典详解
一.字典 一.关键字:dict 1.字典是唯一的键值对数据,其表现形式: dic = {键:值},字典里的键必须保证是唯一的 2.键必须是不可变的数据类型: a.故列表是不能当键的 b.所 ...
- Go语言中的UDP应用
Go语言中的UDP应用 Go语言中使用UDP是很方便的,net包提供了UDP和TCP的功能,这里使用UDP做了一个UDP广播,然后接收各个设备的返回信息.实现起来很快,总体感觉比使用C#中的UDP更优 ...
- (数据科学学习手札33)基于Python的网络数据采集实战(1)
一.简介 前面两篇文章我们围绕利用Python进行网络数据采集铺垫了很多内容,但光说不练是不行的,于是乎,本篇就将基于笔者最近的一项数据需求进行一次网络数据采集的实战: 二.网易财经股票数据爬虫实战 ...
- MySQL共享表空间扩容
一.什么是共享表空间和独占表空间 共享表空间以及独占表空间都是针对数据的存储方式而言的. 共享表空间: 某一个数据库的所有的表数据,索引文件全部放在一个文件中,默认这个共享表空间的文件路径在data目 ...
- poj1050 dp动态规划
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
- cmd中可以运行java,但不能运行javac命令
在cmd中可以运行java,但运行javac命令时提示:'javac' 不是内部或外部命令,也不是可运行的程序或批处理文件. 原因:安装java时把jdk的路径和jre的路径选择成一样,就造成覆盖了. ...
- java---解析XML文件,通过反射动态将XML内容封装到一个类中
本博客讲的XML解析,使用的是dom4j. 首先建立一个maven项目,在dom.xml中引入相应的dom4j的版本.作者下载的是热度很高的1.6.1版本.maven的使用在这里不做详细讲解. 引入成 ...
- Kotlin操作符重载:把标准操作加入到任何类中(KAD 17)
作者:Antonio Leiva 时间:Mar 21, 2017 原文链接:https://antonioleiva.com/operator-overload-kotlin/ 就像其他每种语言一样, ...