AGC017D Game on Tree(树型博弈)
题目大意:
给出一棵n个结点的树,以1为根,每次可以切掉除1外的任意一棵子树,最后不能切的话就为负,问是先手必胜还是后手必胜。
题解:
首先我们考虑利用SG函数解决这个问题
如果1结点有多个子节点,那么SG[1]显然就是子节点代表的子树的SG[x]异或和
所以我们就可以把子树全部拆开
问题就变成了多个树,每个树的根节点只有一个孩子
这种情况的SG[1]就等于它的孩子SG[x] + 1
证明如下
1、切掉孩子,那么SG[x] = 0,说明SG[1]大于0
2、切掉其他结点,局面变成[切掉结点的部分]加上[根节点连向孩子的一条边],也就是说当前局面的SG值必定大于[切掉结点的部分]的SG值,而SG值的定义又取最小,所以SG[1] = SG[x] + 1
然后dfs一遍就可以了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 1e5 +;
vector<int> G[maxn];
int sg[maxn];
void dfs(int x, int fa){
sg[x] = ;
for(auto to : G[x]){
if(to == fa) continue;
dfs(to, x);
sg[x] ^= (sg[to]+);
}
} int main()
{
int n, x, y;
cin>>n;
for(int i = ; i < n; i++){
scanf("%d %d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(, );
if(sg[]) cout<<"Alice";
else cout<<"Bob";
}
AGC017D Game on Tree(树型博弈)的更多相关文章
- POJ 2486 Apple Tree ( 树型DP )
#include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...
- echarts tree 树型图层级距离设置
网上找了半天,没有找到设置层级距离的属性,默认是自动适应的,无奈只能改源码,分享出来希望可以帮到有相同需求的... 上github下载echarts源码包,打开src=>chart=>tr ...
- Codeforces 161D Distance in Tree(树型DP)
题目链接 Distance in Tree $k <= 500$ 这个条件十分重要. 设$f[i][j]$为以$i$为子树,所有后代中相对深度为$j$的结点个数. 状态转移的时候,一个结点的信息 ...
- Educational Codeforces Round 52 (Rated for Div. 2) F. Up and Down the Tree 树型DP
题面 题意:给你一棵树,你起点在1,1也是根节点,你每次可以选择去你子树的某个叶子节点,也可以选择,从叶子节点返回距离不超过k的一个根, 也就是说,你从1开始,向下跳,选择一个叶子(就是没有子树的节点 ...
- CodeForces 160D - Distance in Tree 树型DP
题目给了512MB的空间....用dp[k][i]代表以k为起点...往下面走(走直的不打岔)i步能有多少方案....在更新dp[k][i]过程中同时统计答案.. Program: #include& ...
- D. Distance in Tree(树型Dp计数)
\(其实思路都能想到一点,就是去重这里特别麻烦,没有好的思路.\) \(设dp[i][j]为以i为根深度为j的节点数量\) \(dp[parent][j]=\sum{dp[son][j-1]}\) \ ...
- 路径字符串数据转化为树型层级对象,path to json tree
由于项目中使用了react 及 ant-design ,在使用tree树型控件时,需要 类似下面的数据, const treeData = [{ title: '0-0', key: '0-0', c ...
- HDU 5905 Black White Tree(树型DP)
题目链接 Black White Tree 树型DP,设$f[i][j]$为以$i$为根的子树中大小为$j$的连通块中可以包含的最小黑点数目. $g[i][j]$为以$i$为根的子树中大小为$j$的 ...
- Mac:文件夹树型展示 tree
目标: 想要在MAC的Terminal中查看文件夹中所有文件的树型结构及文件夹.文件树统计. 安装方法: 1.brew安装 官网:http://brew.sh/ brew是Mac中安装软件的神器,一定 ...
随机推荐
- 深度解析JQuery Dom元素操作技巧
深度解析JQuery Dom元素操作技巧 DOM是一种与浏览器.平台.语言无关的接口,使用该接口可以轻松访问页面中所有的标准组件,这篇文章给大家介绍了JQuery dom元素操作方法,写的十分的全面细 ...
- 【Linux】Nginx无法加载.woff .eot .svg .ttf问题解决
只需要修改Nginx的vhosts.ini,加上以下代码即可修复该问题 location ~ \.(eot|otf|ttf|woff|woff2|svg)$ { add_header Access-C ...
- Element-ui学习使用
这是我使用Element-ui的布局,排布的一个界面,原本我是使用WinfowsForm来做的一个摄像头注册以及查询的小工具,目前我关注前后端的开发,所以就想着能不能把这么个小工具,我用前后端的形式开 ...
- SapScript
* [OPEN_FORM] SAPscript: フォーム印刷の開始 * [START_FORM] SAPscript: 書式を開始 * [WRITE_FORM] SAPscript: 書式ウィンドウ ...
- MVC中Model 的Key值不建议用非int型
一次在开发中,key的值用了 byte型,结果插入第一条正常,第二条开始就出错,原因是用byte类型无法实现自动增加1,所以为了方便,建议使用 int型. public virtual byte bk ...
- 9 udp广播
udp有广播 写信 tcp没有广播· 打电话 #coding=utf-8 import socket, sys dest = ('<broadcast>', 7788) # 创建udp ...
- P3527 [POI2011]MET-Meteors
P3527 [POI2011]MET-Meteors 链接 整体二分! 代码 #include<bits/stdc++.h> using namespace std; typedef lo ...
- 【C#】 URL Protocol
[C#] URL Protocol 网页调用本地程序, 支持 Windows 下所有浏览器, 与浏览器插件对比实现简单,但判断是否调用成功时, 只有ie10以上有函数,其他浏览器得自己实现(用 ifr ...
- 通过圆形按钮的绘制熟悉Qt的绘图机制,掌握这种终极方法
基本上用QPainter就可以实现 1. QPainter painter(this); //开始的标志(可以不用) painter.begin(this); //保存最初的设置 painter.sa ...
- CCF-NOIP-2018 提高组(复赛) 模拟试题(四)
T1 贪吃蛇 [问题描述] 贪吃蛇是一个好玩的游戏.在本题中,你需要对这个游戏进行模拟. 这个游戏在一个 \(n\) 行 \(m\) 列的二维棋盘上进行. 我们用 \((x, y)\) 来表示第 \( ...