AGC017D Game on Tree(树型博弈)
题目大意:
给出一棵n个结点的树,以1为根,每次可以切掉除1外的任意一棵子树,最后不能切的话就为负,问是先手必胜还是后手必胜。
题解:
首先我们考虑利用SG函数解决这个问题
如果1结点有多个子节点,那么SG[1]显然就是子节点代表的子树的SG[x]异或和
所以我们就可以把子树全部拆开
问题就变成了多个树,每个树的根节点只有一个孩子
这种情况的SG[1]就等于它的孩子SG[x] + 1
证明如下
1、切掉孩子,那么SG[x] = 0,说明SG[1]大于0
2、切掉其他结点,局面变成[切掉结点的部分]加上[根节点连向孩子的一条边],也就是说当前局面的SG值必定大于[切掉结点的部分]的SG值,而SG值的定义又取最小,所以SG[1] = SG[x] + 1
然后dfs一遍就可以了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 1e5 +;
vector<int> G[maxn];
int sg[maxn];
void dfs(int x, int fa){
sg[x] = ;
for(auto to : G[x]){
if(to == fa) continue;
dfs(to, x);
sg[x] ^= (sg[to]+);
}
} int main()
{
int n, x, y;
cin>>n;
for(int i = ; i < n; i++){
scanf("%d %d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(, );
if(sg[]) cout<<"Alice";
else cout<<"Bob";
}
AGC017D Game on Tree(树型博弈)的更多相关文章
- POJ 2486 Apple Tree ( 树型DP )
#include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...
- echarts tree 树型图层级距离设置
网上找了半天,没有找到设置层级距离的属性,默认是自动适应的,无奈只能改源码,分享出来希望可以帮到有相同需求的... 上github下载echarts源码包,打开src=>chart=>tr ...
- Codeforces 161D Distance in Tree(树型DP)
题目链接 Distance in Tree $k <= 500$ 这个条件十分重要. 设$f[i][j]$为以$i$为子树,所有后代中相对深度为$j$的结点个数. 状态转移的时候,一个结点的信息 ...
- Educational Codeforces Round 52 (Rated for Div. 2) F. Up and Down the Tree 树型DP
题面 题意:给你一棵树,你起点在1,1也是根节点,你每次可以选择去你子树的某个叶子节点,也可以选择,从叶子节点返回距离不超过k的一个根, 也就是说,你从1开始,向下跳,选择一个叶子(就是没有子树的节点 ...
- CodeForces 160D - Distance in Tree 树型DP
题目给了512MB的空间....用dp[k][i]代表以k为起点...往下面走(走直的不打岔)i步能有多少方案....在更新dp[k][i]过程中同时统计答案.. Program: #include& ...
- D. Distance in Tree(树型Dp计数)
\(其实思路都能想到一点,就是去重这里特别麻烦,没有好的思路.\) \(设dp[i][j]为以i为根深度为j的节点数量\) \(dp[parent][j]=\sum{dp[son][j-1]}\) \ ...
- 路径字符串数据转化为树型层级对象,path to json tree
由于项目中使用了react 及 ant-design ,在使用tree树型控件时,需要 类似下面的数据, const treeData = [{ title: '0-0', key: '0-0', c ...
- HDU 5905 Black White Tree(树型DP)
题目链接 Black White Tree 树型DP,设$f[i][j]$为以$i$为根的子树中大小为$j$的连通块中可以包含的最小黑点数目. $g[i][j]$为以$i$为根的子树中大小为$j$的 ...
- Mac:文件夹树型展示 tree
目标: 想要在MAC的Terminal中查看文件夹中所有文件的树型结构及文件夹.文件树统计. 安装方法: 1.brew安装 官网:http://brew.sh/ brew是Mac中安装软件的神器,一定 ...
随机推荐
- python核心编程2 第九章 练习
9–1. 文件过滤. 显示一个文件的所有行, 忽略以井号( # )开头的行. 这个字符被用做Python , Perl, Tcl, 等大多脚本文件的注释符号.附加题: 处理不是第一个字符开头的注释. ...
- TcpServer 使用简介
1.简介 1) Poco 的 TcpServer 是一个多线程的 Tcp 服务器. 服务器使用 ServerSocket(Poco 的一个用于初始化服务器的socket的类) 来接收链接.Server ...
- java程序执行系统命令
String cmd="orakill orcl 1233";//解锁数据库表 Process proc = Runtime.getRuntime().exec(cmd);
- 常见的Dom操作
1.什么是DOM? DOM又称文档对象模型( DOM, Document Object Model )主要用于对HTML和XML文档的内容进行操作.DOM描绘了一个层次化的节点树,通过对节点进行操作, ...
- 列表排序之NB三人组附加一个希尔排序
NB三人组之 快速排序 def partition(li, left, right): tmp = li[left] while left < right: while left < ri ...
- grep用法小结
用法 grep [OPTIONS] PATTERN [FILE...] grep [OPTIONS] -e PATTERN ... [FILE...] grep [OPTIONS] -f FILE . ...
- Linux mysql启动与关闭
service mysql stop service mysqld start
- springMVC3
复习: springmvc框架: DispatcherServlet前端控制器:接收request,进行response HandlerMapping处理器映射器:根据url查找Handler.(可以 ...
- Python全栈面试题
Mr.Seven 博客园 首页 新随笔 联系 订阅 管理 随笔-132 文章-153 评论-516 不吹不擂,你想要的Python面试都在这里了[315+道题] 写在前面 近日恰逢学生毕 ...
- 为什么在默认情况下无法修改被block捕获的变量? __block都做了什么?
默认情况下,block里面的变量,拷贝进去的是变量的值,而不是指向变量的内存的指针.使用__block修饰后的变量,拷贝到block里面的就是指向变量的指针,所以我们就可以修改变量的值.