P3444 [POI2006]ORK-Ploughing
题目描述
Byteasar, the farmer, wants to plough his rectangular field. He can begin with ploughing a slice from any of the field's edges, then he can plough a slice from any unploughed field's edges, and so on, until the whole field is ploughed. After the ploughing of every successive slice, the yet-unploughed field has a rectangular shape. Each slice has a span of 111 , and the length and width of the field are the integers nnn and mmm .
Unfortunately, Byteasar has only one puny and frail nag (horse) at his disposal for the ploughing. Once the nag starts to plough a slice, it won't stop until the slice is completely ploughed. However, if the slice is to much for the nag to bear, it will die of exhaustion, so Byteasar has to be careful. After every ploughed slice, the nag can rest and gather strength. The difficulty of certain parts of the field varies, but Byteasar is a good farmer and knows his field well, hence he knows every part's ploughing-difficulty.
Let us divide the field into m×nm\times nm×n unitary squares - these are called tiles in short.
We identify them by their coordinates (i,j)(i,j)(i,j) , for 1≤i≤m1\le i\le m1≤i≤m and 1≤j≤n1\le j\le n1≤j≤n .
Each tile has its ploughing-difficulty - a non-negative integer.
Let ti,jt_{i,j}ti,j denote the difficulty of the tile which coordinates are (i,j)(i,j)(i,j) .
For every slice, the sum of ploughing-difficulties of the tiles forming it up cannot exceed a certain constant kkk - lest the nag dies.
A difficult task awaits Byteasar: before ploughing each subsequent slice he has to decide which edge of the field he'll plough, so that the nag won't die. On the other hand, he'd like to plough as few slices as possible.
TaskWrite a programme that:
reads the numbers kkk , mmm and nnn from the input file, as well as the ploughing-difficulty coefficients, determines the best way to plough Byteasar's field, writes the result to the output file.
Byteasar想耕种他那块矩形的田,他每次能耕种矩形的一边(上下左右都行),在他每次耕完后,剩下的田也一定是矩形,每块小区域边长为 111 ,耕地的长宽分别为 mmm 和 nnn ,不幸的是Byteasar只有一匹老弱的马,从马开始耕地开始,只有当它耕完了一边才会停下休息。但有些地会非常难耕以至于马会非常的累,因此Byteasar需要特别小心。当耕完了一边之后,马可以停下来休息恢复体力。每块地耕种的难度不一,但是Byteasar都非常清楚。我们将地分成 m×nm\times nm×n 块单位矩形——我们用坐标 (i,j)(i,j)(i,j) 来定义它们。每块地都有一个整数 ti,jt_{i,j}ti,j ,来定义 (i,j)(i,j)(i,j) 的耕种难度。所以每次马耕一边地时的难度就是所有它耕种的地的难度总和,对于这匹虚弱的马而言,这个值不能超过他的体力值。Byteasar想知道在马不死掉的情况下最少需要耕多少次才能把地耕完。
输入输出格式
输入格式:
There are three positive integers in the first line of the input file: kkk , mmm and nnn ,separated by single spaces, 1≤k≤200 000 0001\le k\le 200\ 000\ 0001≤k≤200 000 000 , 1≤m,n≤20001\le m,n\le 20001≤m,n≤2000 .
In the following nnn lines there are the ploughing-difficulty coefficients.
The line no. j+1j+1j+1 contains the coefficients t1,j,t2,j...,tn,mt_{1,j},t_{2,j}...,t_{n,m}t1,j,t2,j...,tn,m , separated by single spaces, 0≤ti,j≤100 0000\le t_{i,j}\le 100\ 0000≤ti,j≤100 000 .
输出格式:
Your programme should write one integer to the output file:
the minimum number of slices required to plough the field while
satisfying the given conditions. Since we care for animals, we guarantee
that the field can be ploughed according to the above rules. But
remember, saving the nag is up to you!
输入输出样例
12 6 4
6 0 4 8 0 5
0 4 5 4 6 0
0 5 6 5 6 0
5 4 0 0 5 4
8
说明
感谢@NaVi_Awson 提供翻译
Solution:
大鸡哥翻译题,贼有意思。
本题一眼的不可做,连随机化都没有去打。
正解非常神奇的贪心。
首先可以确定的是答案的范围:$min(n,m)\leq ans\leq n+m$(显然的)。
然后我们可以对纵列贪心,即尽可能的删两边的纵列,不行时再删最上和最下两行,至于上下两行被删的顺序,我们可以设定一个阀值$p,\; p\in[1,n]$,表示上层删的行数不超过$p$,当达到该阀值时就直接删最下行,这样确定出的优先级是先左右后上下。同理,将优先级改为先上下后左右,尽可能的删顶底的两行。在每次枚举时更新答案就好了。
贪心的正确性证明:首先可以确定当横纵都能删时,按先左右后上下的优先级删去纵列后不会影响横行的删去(上次横纵都能删,现在删掉纵列,显然横行还是可以删去);而若纵列能删而横行不能删,那么删去纵列,横行能删的可能性会更高;而若横能删而纵不能删,则删去横行后,要删的纵列数并不会减少,所以后面还是尽可能的删去列,这样可以确定在纵列先与横行的优先级下,删行不会使得答案更优,保持该优先级能确保横行删的次数尽可能的少,所以答案最优为$m+k_1,\; k_1\in[1,n]$。但是可能某种情况下删行时最优(比如每行每列都能删,而行数小于列数),于是确定先上下后左右的优先级后,尽可能减少删列的次数,删行的最优解为$n+k_2,\; k_2\in[1,m]$。两者取最小值就是答案了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int k,n,m,sl[N][N],sr[N][N],a[N][N],ans=0x7fffffff; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} il void solve(){
int ln,rn,lm,rm,tot,sum;
For(p,,m){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k&&lm<p){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
For(p,,n){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k&&ln<p){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
} int main(){
k=gi(),m=gi(),n=gi();
For(i,,n) For(j,,m) a[i][j]=gi(),sl[i][j]=sl[i][j-]+a[i][j];
For(i,,m) For(j,,n) sr[i][j]=sr[i][j-]+a[j][i];
solve();
cout<<ans;
return ;
}
P3444 [POI2006]ORK-Ploughing的更多相关文章
- [洛谷P3444] [POI2006]ORK-Ploughing
洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...
- 洛谷P3444 [POI2006]ORK-Ploughing [枚举,贪心]
题目传送门 ork 格式难调,题面就不放了. 分析: 一道偏难的贪心和枚举题.考试的时候是弃疗了...yyb巨佬已经讲的很详细了,推荐他的博客.这里小蒟蒻就只放代码了. Code: #include& ...
- [POI2006]ORK-Ploughing(贪心,枚举)
[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He can begi ...
- 【BZOJ】【1520】【POI2006】Szk-Schools
网络流/费用流 比较裸的一道题 依旧是二分图模型,由源点S连向每个学校 i (1,0),「注意是连向第 i 所学校,不是连向学校的标号m[i]……唉这里WA了一次」 然后对于每所学校 i 连接 j+n ...
- BZOJ1510: [POI2006]Kra-The Disks
1510: [POI2006]Kra-The Disks Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 265 Solved: 157[Submit][ ...
- bzoj 1513 [POI2006]Tet-Tetris 3D(二维线段树)
1513: [POI2006]Tet-Tetris 3D Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 540 Solved: 175[Submit ...
- BZOJ1524: [POI2006]Pal
1524: [POI2006]Pal Time Limit: 5 Sec Memory Limit: 357 MBSubmit: 308 Solved: 101[Submit][Status] D ...
- BZOJ1511: [POI2006]OKR-Periods of Words
1511: [POI2006]OKR-Periods of Words Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 174 Solved: 92[Su ...
- Poi2006 Palindromes
2780: Poi2006 Palindromes Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 15 Solved: 5[Submit][Stat ...
随机推荐
- Linux-history的用法
history: history [-c] [-d 偏移量] [n] 或 history -anrw [文件名] 或 history -ps 参数 [参数...] history的作用是显示或操纵历史 ...
- 大数据开发从入门小白到删库跑路(一)- 获取Hadoop
Hadoop是一个可以通过相对简单编程模型实现跨多台计算机集群分布式处理大型数据集的框架.它不是依赖于高额成本的硬件可靠性来提供高可用性,Hadoop的设计能从单个服务器扩展到数千台机器,每个机器提供 ...
- rhel7-Samba服务搭建
服务检查: [root@localhost ~]# systemctl status smb.service● smb.service - Samba SMB Daemon Loaded: loa ...
- Hive(1)-基本概念
一. 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能. 本 ...
- CentOS下禁止防火墙
CentOS下禁止防火墙 1.使用如下命令安装iptables-services. yum install -y iptables-services 2.关闭防火墙. service iptables ...
- (数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们 ...
- 动态规划(DP)算法
参考https://blog.csdn.net/libosbo/article/details/80038549 动态规划是求解决策过程最优化的数学方法.利用各个阶段之间的关系,逐个求解,最终求得全局 ...
- linux ln 建立软链接-- 基于dubbo-zookeeper服务的 服务jar 引用公共的 lib
对于ln命令网上有很多的教程,这里不再复述, 其基本目的是:多个文件夹公用一个文件夹的里的文件. 其基本命令格式: ln [option] source_file dist_file (source_ ...
- oracle 数据被修改怎么修复?(闪回)
数据被删除 或者 update 的时候忘记勾选where 限制条件,数据全部更新了? 怎么办? 要跑路了? NO !!! 看下面,迅速帮你闪回数据! demo sql: 1. SELECT * FR ...
- 3106: [cqoi2013]棋盘游戏
3106: [cqoi2013]棋盘游戏 链接 分析: 极大极小搜索 + 记忆化. 代码 #include<bits/stdc++.h> using namespace std; type ...