P3444 [POI2006]ORK-Ploughing
题目描述
Byteasar, the farmer, wants to plough his rectangular field. He can begin with ploughing a slice from any of the field's edges, then he can plough a slice from any unploughed field's edges, and so on, until the whole field is ploughed. After the ploughing of every successive slice, the yet-unploughed field has a rectangular shape. Each slice has a span of 111 , and the length and width of the field are the integers nnn and mmm .
Unfortunately, Byteasar has only one puny and frail nag (horse) at his disposal for the ploughing. Once the nag starts to plough a slice, it won't stop until the slice is completely ploughed. However, if the slice is to much for the nag to bear, it will die of exhaustion, so Byteasar has to be careful. After every ploughed slice, the nag can rest and gather strength. The difficulty of certain parts of the field varies, but Byteasar is a good farmer and knows his field well, hence he knows every part's ploughing-difficulty.
Let us divide the field into m×nm\times nm×n unitary squares - these are called tiles in short.
We identify them by their coordinates (i,j)(i,j)(i,j) , for 1≤i≤m1\le i\le m1≤i≤m and 1≤j≤n1\le j\le n1≤j≤n .
Each tile has its ploughing-difficulty - a non-negative integer.
Let ti,jt_{i,j}ti,j denote the difficulty of the tile which coordinates are (i,j)(i,j)(i,j) .
For every slice, the sum of ploughing-difficulties of the tiles forming it up cannot exceed a certain constant kkk - lest the nag dies.
A difficult task awaits Byteasar: before ploughing each subsequent slice he has to decide which edge of the field he'll plough, so that the nag won't die. On the other hand, he'd like to plough as few slices as possible.
TaskWrite a programme that:
reads the numbers kkk , mmm and nnn from the input file, as well as the ploughing-difficulty coefficients, determines the best way to plough Byteasar's field, writes the result to the output file.
Byteasar想耕种他那块矩形的田,他每次能耕种矩形的一边(上下左右都行),在他每次耕完后,剩下的田也一定是矩形,每块小区域边长为 111 ,耕地的长宽分别为 mmm 和 nnn ,不幸的是Byteasar只有一匹老弱的马,从马开始耕地开始,只有当它耕完了一边才会停下休息。但有些地会非常难耕以至于马会非常的累,因此Byteasar需要特别小心。当耕完了一边之后,马可以停下来休息恢复体力。每块地耕种的难度不一,但是Byteasar都非常清楚。我们将地分成 m×nm\times nm×n 块单位矩形——我们用坐标 (i,j)(i,j)(i,j) 来定义它们。每块地都有一个整数 ti,jt_{i,j}ti,j ,来定义 (i,j)(i,j)(i,j) 的耕种难度。所以每次马耕一边地时的难度就是所有它耕种的地的难度总和,对于这匹虚弱的马而言,这个值不能超过他的体力值。Byteasar想知道在马不死掉的情况下最少需要耕多少次才能把地耕完。
输入输出格式
输入格式:
There are three positive integers in the first line of the input file: kkk , mmm and nnn ,separated by single spaces, 1≤k≤200 000 0001\le k\le 200\ 000\ 0001≤k≤200 000 000 , 1≤m,n≤20001\le m,n\le 20001≤m,n≤2000 .
In the following nnn lines there are the ploughing-difficulty coefficients.
The line no. j+1j+1j+1 contains the coefficients t1,j,t2,j...,tn,mt_{1,j},t_{2,j}...,t_{n,m}t1,j,t2,j...,tn,m , separated by single spaces, 0≤ti,j≤100 0000\le t_{i,j}\le 100\ 0000≤ti,j≤100 000 .
输出格式:
Your programme should write one integer to the output file:
the minimum number of slices required to plough the field while
satisfying the given conditions. Since we care for animals, we guarantee
that the field can be ploughed according to the above rules. But
remember, saving the nag is up to you!
输入输出样例
12 6 4
6 0 4 8 0 5
0 4 5 4 6 0
0 5 6 5 6 0
5 4 0 0 5 4
8
说明
感谢@NaVi_Awson 提供翻译
Solution:
大鸡哥翻译题,贼有意思。
本题一眼的不可做,连随机化都没有去打。
正解非常神奇的贪心。
首先可以确定的是答案的范围:$min(n,m)\leq ans\leq n+m$(显然的)。
然后我们可以对纵列贪心,即尽可能的删两边的纵列,不行时再删最上和最下两行,至于上下两行被删的顺序,我们可以设定一个阀值$p,\; p\in[1,n]$,表示上层删的行数不超过$p$,当达到该阀值时就直接删最下行,这样确定出的优先级是先左右后上下。同理,将优先级改为先上下后左右,尽可能的删顶底的两行。在每次枚举时更新答案就好了。
贪心的正确性证明:首先可以确定当横纵都能删时,按先左右后上下的优先级删去纵列后不会影响横行的删去(上次横纵都能删,现在删掉纵列,显然横行还是可以删去);而若纵列能删而横行不能删,那么删去纵列,横行能删的可能性会更高;而若横能删而纵不能删,则删去横行后,要删的纵列数并不会减少,所以后面还是尽可能的删去列,这样可以确定在纵列先与横行的优先级下,删行不会使得答案更优,保持该优先级能确保横行删的次数尽可能的少,所以答案最优为$m+k_1,\; k_1\in[1,n]$。但是可能某种情况下删行时最优(比如每行每列都能删,而行数小于列数),于是确定先上下后左右的优先级后,尽可能减少删列的次数,删行的最优解为$n+k_2,\; k_2\in[1,m]$。两者取最小值就是答案了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int k,n,m,sl[N][N],sr[N][N],a[N][N],ans=0x7fffffff; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} il void solve(){
int ln,rn,lm,rm,tot,sum;
For(p,,m){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k&&lm<p){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
For(p,,n){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k&&ln<p){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
} int main(){
k=gi(),m=gi(),n=gi();
For(i,,n) For(j,,m) a[i][j]=gi(),sl[i][j]=sl[i][j-]+a[i][j];
For(i,,m) For(j,,n) sr[i][j]=sr[i][j-]+a[j][i];
solve();
cout<<ans;
return ;
}
P3444 [POI2006]ORK-Ploughing的更多相关文章
- [洛谷P3444] [POI2006]ORK-Ploughing
洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...
- 洛谷P3444 [POI2006]ORK-Ploughing [枚举,贪心]
题目传送门 ork 格式难调,题面就不放了. 分析: 一道偏难的贪心和枚举题.考试的时候是弃疗了...yyb巨佬已经讲的很详细了,推荐他的博客.这里小蒟蒻就只放代码了. Code: #include& ...
- [POI2006]ORK-Ploughing(贪心,枚举)
[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He can begi ...
- 【BZOJ】【1520】【POI2006】Szk-Schools
网络流/费用流 比较裸的一道题 依旧是二分图模型,由源点S连向每个学校 i (1,0),「注意是连向第 i 所学校,不是连向学校的标号m[i]……唉这里WA了一次」 然后对于每所学校 i 连接 j+n ...
- BZOJ1510: [POI2006]Kra-The Disks
1510: [POI2006]Kra-The Disks Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 265 Solved: 157[Submit][ ...
- bzoj 1513 [POI2006]Tet-Tetris 3D(二维线段树)
1513: [POI2006]Tet-Tetris 3D Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 540 Solved: 175[Submit ...
- BZOJ1524: [POI2006]Pal
1524: [POI2006]Pal Time Limit: 5 Sec Memory Limit: 357 MBSubmit: 308 Solved: 101[Submit][Status] D ...
- BZOJ1511: [POI2006]OKR-Periods of Words
1511: [POI2006]OKR-Periods of Words Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 174 Solved: 92[Su ...
- Poi2006 Palindromes
2780: Poi2006 Palindromes Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 15 Solved: 5[Submit][Stat ...
随机推荐
- Co. - Microsoft - Windows - Tomcat、JDK、MySQL通过 Inno 集成为exe部署包
需求 客户设备为Windows系统,需要部署公司产品,因此将Tomcat.JDK.MySQL.Java.war 打包整合成exe文件,Windows下一键部署安装. 最佳实践 1.下载免安装的mysq ...
- SQL中EXCEPT函数在 Mysql 和 sqlServer 中的替代方法
示例摘自:极客代码:http://wiki.jikexueyuan.com/project/sql/useful-functions/except-clause.html EXCEPT 子句 EXCE ...
- django 面试题
面试题1:migrate怎么判断哪些迁移脚本需要执行: 他会将代码中的迁移脚本和数据库中django_migrations中的迁移脚本进行对比,如果发现数据库中,没有这个迁移脚本,那么就会执行这个迁移 ...
- 【mysql学习-2】
part-1: USE mysql;CREATE TABLE tb_x(id INT,NAME CHAR(10));INSERT INTO tb_x VALUES(5,"a");S ...
- React学习(4)——向服务器请求数据并显示
本文中涉及到的技术包括:node.js/express服务器的搭建.fetch发送数据请求. 在之前的几篇文章中,介绍了如何搭建基础的React项目,以及一些简单知识,现在,我们还需要掌握如何用Rea ...
- 【Thrift一】Thrift安装部署
Thrift安装部署 Thrift安装部署 下载源码包 安装g++ 解压Thrift安装包 安装boost开发工具 测试(python版) 下载源码包 wget http://apache.fayea ...
- liunx下搭建python开发环境
=============================================================================注意: 在linux下安装新的版本的pytho ...
- Sqoop的安装配置及使用
一.Sqoop基础:连接关系型数据库与Hadoop的桥梁 1.1 Sqoop的基本概念 Hadoop正成为企业用于大数据分析的最热门选择,但想将你的数据移植过去并不容易.Apache Sqoop正在加 ...
- MySQL共享表空间扩容
一.什么是共享表空间和独占表空间 共享表空间以及独占表空间都是针对数据的存储方式而言的. 共享表空间: 某一个数据库的所有的表数据,索引文件全部放在一个文件中,默认这个共享表空间的文件路径在data目 ...
- MVC中路由的修改和浏览器的地址参数
在 ASP.NET MVC 应用程序中,它是更常见的做法在作为路由数据 (像我们一样与身份证上面) 比将它们作为查询字符串传递的参数中传递. ) { return HttpUtility.HtmlEn ...