【洛谷 P4555】 [国家集训队]最长双回文串 (Manacher)
题目链接
\(|S|<=10^5\),时间还是很宽松的。
允许我们使用线性/\(N\log N\)/甚至\(N \sqrt N\)的算法。
设\(l[i]\)表示以\(a[i]\)结尾的最长回文串,\(r[i]\)表示以\(a[i]\)开头的最长的回文串,
那么答案很显然就是\(\max_{i=1}^{len-1}l[i]+r[i+1]\)
怎么求?
回顾一下我们的马拉车算法
for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i); //min左边的参数是这个点的对称点的hw值,右边的是保证这个部分在这个大回文串之内
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i]; //拓展
if(hw[i] + i > maxright){ //更新右端点
maxright = hw[i] + i;
mid = i;
}
}
我们在每个\(i\)处理出\(hw[i]\)后更新\(i\)~\(i+hw[i]-1\)的\(l\)值,每个位置只需要更新一次就好了,因为我们是从左到右遍历的,因此第一次更新的一定是最优值。所以我们只需要定义一个变量\(p\),表示已经更新到哪里了,然后每次\(for(p->i+hw[i]-1)\),更新\(l\)值,如果\(p\)已经超过\(i+hw[i]-1\),是不会更新的,保证每个位置只被更新一次,也就是保证了时间复杂度是线性的。\(r\)也同理,反过来跑一遍就好了。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 100010;
char b[MAXN], a[MAXN << 1];
int hw[MAXN << 1], l[MAXN], r[MAXN], ans, n, p = 1;
int main(){
scanf("%s", b);
a[0] = a[1] = '#';
int len = strlen(b);
for(int i = 0; i < len; ++i)
a[(i << 1) + 2] = b[i], a[(i << 1) + 3] = '#';
int maxright = 0, mid; len = (len << 1) + 3;
for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i);
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i];
if(hw[i] + i > maxright){
maxright = hw[i] + i;
mid = i;
}
for(; p < i + hw[i]; ++p) l[p] = (p - i) + 1 - (a[p] == '#');
}p = len - 1;
for(int i = len - 1; i; --i)
for(; p > i - hw[i]; --p)
r[p] = (i - p) + 1 - (a[p] == '#');
for(int i = 1; i < len - 1; ++i)
ans = max(ans, l[i] + r[i + 1]);
printf("%d\n", ans);
return 0;
}
【洛谷 P4555】 [国家集训队]最长双回文串 (Manacher)的更多相关文章
- 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)
题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...
- 洛谷 P4555 [国家集训队]最长双回文串 解题报告
P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...
- 洛谷 P4555 [国家集训队]最长双回文串(Manacher)
题目链接:https://www.luogu.com.cn/problem/P4555 首先明白两个回文串,那么要使两个回文串成立,那么我们只能把$'#'$作为中间节点. 然后我们跑一边Manache ...
- 洛谷 P4555 [国家集训队]最长双回文串
链接: P4555 题意: 在字符串 \(S\) 中找出两个相邻非空回文串,并使它们长度之和最大. 分析: 直接使用马拉车算法求出每个点扩展的回文串.如果枚举两个回文串显然会超时,我们考虑切割一个长串 ...
- P4555 [国家集训队]最长双回文串
P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...
- 【洛谷】P4555 [国家集训队]最长双回文串
P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...
- Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串
题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...
- BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)
BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...
- [国家集训队]最长双回文串 manacher
---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...
- P4555 [国家集训队]最长双回文串(回文树)
题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...
随机推荐
- 手把手教你写css3通用动画
之前接了几个微信里的项目,类似电子邀请函,什么分析报告这样的项目, 对css3动画要求十分高,每个页面客户几乎都有天马行空的想法,或者说设计师有这样的想法.众所周知css3里的keyframe写好了就 ...
- mysql8.0.14 安装
1.下载 地址:https://dev.mysql.com/downloads/mysql/ 找到zip压缩文件. 2.配置环境变量 把解压后的路径配置到环境变量中 3.安装 在解压后的文件夹中新建m ...
- apollo命令行传入参数
Java apollo客户端运行配置 需要在META-INF中创建app.properties文件,以配置app.id 还需要在/opt/settings/server.properties或C:/o ...
- picker组件,mode=date,苹果机年份从1开始
由于在IOS上复制图片不方便, 所以用了张别的网站的图 这是在没有设置value和start的情况下出现的,安卓机上显示是好的.尝试完网上相关说法, 发现都不中! 通过各种挣扎啊!~ 心里苦啊~ 复制 ...
- Beats数据采集
Beats数据采集 Beats是elastic公司的一款轻量级数据采集产品,它包含了几个子产品: packetbeat(用于监控网络流量). filebeat(用于监听日志数据,可以替代logstas ...
- JSON教程(1)
JSON:JavaScript对象表示发即JavaScript Object Notation. JSON是存储和交换文本信息的语法.类似XML. JSON比XML更小,更快,更易解析. { &quo ...
- JavaScript实现键盘操作页面跳转
对于使用笔记本的同学来说,鼠标操作比较费劲,键盘操作比较方便,下面是一段JavaScript写的,用键盘来实现页面跳转.把location后面的改成你要跳转的地址即可,示例是用方向键实现日志页面的前一 ...
- hdu 1284 钱币兑换问题 (递推 || DP || 母函数)
钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- P3509 [POI2010]ZAB-Frog
题目描述 On the bed of one particularly long and straight Byteotian brook there lie rocks jutting above ...
- 【题解】APIO2007动物园
首先一眼感受到这题特别的性质……5个?这么小的,感觉就像是状压.脑补了一下,如果没有环的话应该很好做吧……有环怎么办?5真的很小的,随便乱搞肯定也可以.那就放在外面暴力枚举吧.然后正解就出来了. 然而 ...