题目链接

\(|S|<=10^5\),时间还是很宽松的。

允许我们使用线性/\(N\log N\)/甚至\(N \sqrt N\)的算法。

设\(l[i]\)表示以\(a[i]\)结尾的最长回文串,\(r[i]\)表示以\(a[i]\)开头的最长的回文串,

那么答案很显然就是\(\max_{i=1}^{len-1}l[i]+r[i+1]\)

怎么求?

回顾一下我们的马拉车算法

for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i); //min左边的参数是这个点的对称点的hw值,右边的是保证这个部分在这个大回文串之内
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i]; //拓展
if(hw[i] + i > maxright){ //更新右端点
maxright = hw[i] + i;
mid = i;
}
}

我们在每个\(i\)处理出\(hw[i]\)后更新\(i\)~\(i+hw[i]-1\)的\(l\)值,每个位置只需要更新一次就好了,因为我们是从左到右遍历的,因此第一次更新的一定是最优值。所以我们只需要定义一个变量\(p\),表示已经更新到哪里了,然后每次\(for(p->i+hw[i]-1)\),更新\(l\)值,如果\(p\)已经超过\(i+hw[i]-1\),是不会更新的,保证每个位置只被更新一次,也就是保证了时间复杂度是线性的。\(r\)也同理,反过来跑一遍就好了。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 100010;
char b[MAXN], a[MAXN << 1];
int hw[MAXN << 1], l[MAXN], r[MAXN], ans, n, p = 1;
int main(){
scanf("%s", b);
a[0] = a[1] = '#';
int len = strlen(b);
for(int i = 0; i < len; ++i)
a[(i << 1) + 2] = b[i], a[(i << 1) + 3] = '#';
int maxright = 0, mid; len = (len << 1) + 3;
for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i);
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i];
if(hw[i] + i > maxright){
maxright = hw[i] + i;
mid = i;
}
for(; p < i + hw[i]; ++p) l[p] = (p - i) + 1 - (a[p] == '#');
}p = len - 1;
for(int i = len - 1; i; --i)
for(; p > i - hw[i]; --p)
r[p] = (i - p) + 1 - (a[p] == '#');
for(int i = 1; i < len - 1; ++i)
ans = max(ans, l[i] + r[i + 1]);
printf("%d\n", ans);
return 0;
}

【洛谷 P4555】 [国家集训队]最长双回文串 (Manacher)的更多相关文章

  1. 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)

    题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...

  2. 洛谷 P4555 [国家集训队]最长双回文串 解题报告

    P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...

  3. 洛谷 P4555 [国家集训队]最长双回文串(Manacher)

    题目链接:https://www.luogu.com.cn/problem/P4555 首先明白两个回文串,那么要使两个回文串成立,那么我们只能把$'#'$作为中间节点. 然后我们跑一边Manache ...

  4. 洛谷 P4555 [国家集训队]最长双回文串

    链接: P4555 题意: 在字符串 \(S\) 中找出两个相邻非空回文串,并使它们长度之和最大. 分析: 直接使用马拉车算法求出每个点扩展的回文串.如果枚举两个回文串显然会超时,我们考虑切割一个长串 ...

  5. P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...

  6. 【洛谷】P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...

  7. Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串

    题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...

  8. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  9. [国家集训队]最长双回文串 manacher

    ---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...

  10. P4555 [国家集训队]最长双回文串(回文树)

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...

随机推荐

  1. Windows扩展屏开发总结

    本文来自网易云社区 作者:梁敏 一.多屏设置 在设置-系统-可以点击显示器1和2,可以进行单独设置: "使之成为我的主显示器"可以设置当前显示器是主屏:主屏的选择会决定整个虚拟屏幕 ...

  2. 「暑期训练」「Brute Force」 Optimal Point on a Line (Educational Codeforces Round 16, B)

    题意 You are given n points on a line with their coordinates $x_i$. Find the point x so the sum of dis ...

  3. 【java并发编程实战】第五章:基础构建模块

    1.同步容器类 它们是线程安全的 1.1 vector和hashtable. 和Collections.synchronizeXxx()一样.实现方式就是在每个方法里面加入synchronize代码块 ...

  4. 《机器学习实战》 in python3.x

    机器学习实战这本书是在python2.x的环境下写的,而python3.x中好多函数和2.x中的名称或使用方法都不一样了,因此对原书中的内容需要校正,下面简单的记录一下学习过程中fix的部分 1.pr ...

  5. Fast-RCNN论文总结整理

    此篇博客写作思路是一边翻译英文原文一边总结博主在阅读过程中遇到的问题及一些思考,因为博主本人阅读英文论文水平不高,所以还请大家在看此篇博客的过程中带着批判的眼神阅读!小墨镜带好,有什么不对的地方请在留 ...

  6. HDU 4587 TWO NODES(割点)(2013 ACM-ICPC南京赛区全国邀请赛)

    Description Suppose that G is an undirected graph, and the value of stab is defined as follows: Amon ...

  7. 《SQL入门经典》总结

    <SQL入门经典>这本书从考试前就开了个头,一直到前两天才看完,拉的战线也够长的.放假来了,基本上什么内容都不记得了.好不容易看完了,就赶紧总结一下吧! 该书分为两大部分,第一部分是第1~ ...

  8. 一张图彻底搞懂JavaScript的==运算

    一张图彻底搞懂JavaScript的==运算 来源 https://zhuanlan.zhihu.com/p/21650547 PS:最后,把图改了一下,仅供娱乐 : ) 大家知道,==是JavaSc ...

  9. [Leetcode] Best time to buy and sell stock 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. If you were ...

  10. CF893F Subtree Minimum Query 解题报告

    CF893F Subtree Minimum Query 输入输出格式 输入格式: The first line contains two integers \(n\) and \(r\) ( \(1 ...