CF 305B——Continued Fractions——————【数学技巧】
2 seconds
256 megabytes
standard input
standard output
A continued fraction of height n is a fraction of form
. You are given two rational numbers, one is represented as
and the other one is represented as a finite fraction of height n. Check if they are equal.
The first line contains two space-separated integers p, q (1 ≤ q ≤ p ≤ 1018) — the numerator and the denominator of the first fraction.
The second line contains integer n (1 ≤ n ≤ 90) — the height of the second fraction. The third line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 1018) — the continued fraction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Print "YES" if these fractions are equal and "NO" otherwise.
9 4
2
2 4
YES
9 4
3
2 3 1
YES
9 4
3
1 2 4
NO
In the first sample
.
In the second sample
.
In the third sample
.
题目大意:判断两个式子是不是相等。
解题思路:p=q*a+r(a表示商,r表示余数)。则可以每次判断p-q*ai(相当于ai后边的分式的结果)的值是否小于0,如果小于0,说明肯定是不等的;如果大于0,将q当做p,将(p-q*ai)当做q(p、q的转变,表示将后边的一串分式取倒数)重复上边的过程。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL a[100];
LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
}
int main(){
LL p,q,tm;
int n,i,j,k;
while(scanf("%I64d%I64d",&p,&q)!=EOF){ scanf("%d",&n);
bool flag=0;
for(i=0;i<n;i++){
scanf("%I64d",&a[i]);
if(flag==1){
continue;
}
if(p/q<a[i]){
flag=1;
continue;
}
tm=q;
q=p-q*a[i];
if(q<=0&&i!=n-1){
flag=1;
continue;
}
p=tm;
tm=gcd(p,q);
p/=tm;
q/=tm;
}
if(q>0)
flag=1;
if(flag==1){
printf("NO\n");
}else{
printf("YES\n");
}
}
return 0;
}
CF 305B——Continued Fractions——————【数学技巧】的更多相关文章
- Continued Fractions CodeForces - 305B (java+高精 / 数学)
A continued fraction of height n is a fraction of form . You are given two rational numbers, one is ...
- CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)
ACM思维题训练集合 To confuse the opponents, the Galactic Empire represents fractions in an unusual format. ...
- Codeforces 305B:Continued Fractions(思维+gcd)
http://codeforces.com/problemset/problem/305/B 题意:就是判断 p / q 等不等于那条式子算出来的值. 思路:一开始看到 1e18 的数据想了好久还是不 ...
- 丑数<数学技巧>
题意:丑数就是质因子只有2,3,5 ,7,的数,另外1也是丑数.求第n(1=<n<=5842)个丑数,n=0,结束. 思路:.3.5或者7的结果(1除外).那么,现在最主要的问题是如何排序 ...
- 2014-2015 ACM-ICPC East Central North America Regional Contest (ECNA 2014) A、Continued Fractions 【模拟连分数】
任意门:http://codeforces.com/gym/100641/attachments Con + tin/(ued + Frac/tions) Time Limit: 3000/1000 ...
- nyoj--1170--最大的数(数学技巧)
最大的数 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 小明和小红在打赌说自己数学学的好,于是小花就给他们出题了,考考他们谁NB,题目是这样的给你N个 ...
- CF Amr and Pins (数学)
Amr and Pins time limit per test 1 second memory limit per test 256 megabytes input standard input o ...
- hdu 5675 ztr loves math(数学技巧)
Problem Description ztr loves research Math.One day,He thought about the "Lower Edition" o ...
- HDU更多的学校比赛9场 HDU 4965Fast Matrix Calculation【矩阵运算+数学技巧】
困难,.,真,,,不是太困难 的问题是,有一个矩阵运算优化 您有权发言权N*K矩阵A给K*N矩阵B(1<=N<=1000 && 1=<K<=6).他们拿起了第一 ...
随机推荐
- 一个简单的tcp代理实现
There are a number of reasons to have a TCP proxy in your tool belt, bothfor forwarding traffic to b ...
- Ubuntu chmod 命令可以用来修改文件或文件夹的读写权限
chmod 命令有两种使用方式 —————————————————————————— (1)chmod [ u / g / o / a ] [ + / - / = ] [ r / w / x ] fi ...
- React基础篇 (1)-- render&components
render 基础用法 //1.创建虚拟DOM元素对象 var vDom=<h1>hello wold!</h1> //2.渲染 ReactDOM.render(vDom,do ...
- linux系统安全及应用——弱口令检测
Joth the Ripper,简称JR,一款密码分析工具,支持字典式的暴力破解,通过对shadow文件的口令分析,可以检测密码强度,官方网站http://www.openwall.com/john/ ...
- django 部署到Ubuntu安装MYSQL56
阿里云 Ubuntu 14.04 安装mysql 5.6 1.升级apt-get sudo apt-get update 2. 安装mysql5.6版本 apt-get install mysql-s ...
- count distinct 组合使用
SELECT COUNT(DISTINCT Lbox_Sn) FROM Tab_History_Info
- bootstrap表单控件
禁用状态: 被禁用的 fieldset 为<fieldset> 设置 disabled 属性,可以禁用 <fieldset> 中包含的所有控件. <form> &l ...
- sharding-jdbc数据分片配置
数据分片 不使用Spring 引入Maven依赖 <dependency> <groupId>org.apache.shardingsphere</groupId> ...
- Java实现二维码生成的方法
1.支持QRcode.ZXing 二维码生成.解析: package com.thinkgem.jeesite.test; import com.google.zxing.BarcodeFormat; ...
- [Microsoft] 微软技术平台的Cloud Building平台AppVeyor
Link: http://www.tuicool.com/articles/uMBZba http://www.appveyor.com/ 随着云技术的不断完善,基于云的应用越发丰富起来.AppVey ...