light oj 1008 - Fibsieve`s Fantabulous Birthday
Time Limit: 0.5 second(s) | Memory Limit: 32 MB |
Fibsieve had a fantabulous (yes, it's an actual word) birthday party this year. He had so many gifts that he was actually thinking of not having a party next year.
Among these gifts there was an N x N glass chessboard that had a light in each of its cells. When the board was turned on a distinct cell would light up every second, and then go dark.
The cells would light up in the sequence shown in the diagram. Each cell is marked with the second in which it would light up.
(The numbers in the grids stand for the time when the corresponding cell lights up)
In the first second the light at cell (1, 1) would be on. And in the 5th second the cell (3, 1) would be on. Now, Fibsieve is trying to predict which cell will light up at a certain time (given in seconds). Assume that N is large enough.
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case will contain an integer S (1 ≤ S ≤ 1015) which stands for the time.
Output
For each case you have to print the case number and two numbers (x, y), the column and the row number.
Sample Input |
Output for Sample Input |
3 8 20 25 |
Case 1: 2 3 Case 2: 5 4 Case 3: 1 5 |
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1008
算是道模拟题吧!找出数的排列顺序模拟下即可
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#define LL long long
#define DD double
#define MAX 20000000
using namespace std;
int main()
{
int t,k;
DD n;
LL m,j,i;
scanf("%d",&t);
k=1;
while(t--)
{
scanf("%lf",&n);
DD ans=sqrt(n);
LL ant=(LL)(ans);
printf("Case %d: ",k++);
if(ans==ant)
{
if(ant%2==0)
printf("%lld 1\n",ant);
else if(ant&1)
printf("1 %lld\n",ant);
}
else
{
LL sum=pow(ant+1,2);
LL sun=pow(ant,2);
LL flag=(LL)(sum-n);
if(flag==ant)
printf("%lld %lld\n",ant+1,ant+1);
else if(flag<ant)
{
if((ant+1)%2==0)
printf("%lld %lld\n",ant+1,flag+1);
else
printf("%lld %lld\n",flag+1,ant+1);
}
else
{
if((ant+1)%2==0)
printf("%lld %lld\n",(sum-sun)-flag,ant+1);
else
printf("%lld %lld\n",ant+1,(sum-sun)-flag);
}
}
}
return 0;
}
light oj 1008 - Fibsieve`s Fantabulous Birthday的更多相关文章
- [LOJ 1008] Fibsieve`s Fantabulous Birthday
A - Fibsieve`s Fantabulous Birthday Time Limit:500MS Memory Limit:32768KB 64bit IO Format:%l ...
- Light OJ 1008
找规律. 首先令n=sqrt(s),上取整.讨论当n为偶数时,若n*n-s<n则x=n,y=n*n-s+1否则x=-n*n+2*n+s-1,y=n;如果n为奇数,交换x,y即可,对称的. Sam ...
- Light OJ 1114 Easily Readable 字典树
题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...
- Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...
- Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖
标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...
- Light OJ 1316 A Wedding Party 最短路+状态压缩DP
题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...
- light oj 1007 Mathematically Hard (欧拉函数)
题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...
- Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖
题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...
- Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩
题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...
随机推荐
- java CMS gc解析
转载: http://www.blogjava.net/killme2008/archive/2009/09/22/295931.html CMS,全称Concurrent Low Pause ...
- 多线程 (三)iOS中的锁
锁的类别:互斥锁,递归锁,条件锁,自旋锁等 锁的实现方式:NSLock,NSRecursiveLock, NSConditionLock,@synchronized,GCD的信号量等 下面说一下常用的 ...
- 使用Nginx+Keepalived组建高可用负载平衡Web server集群
一,首先说明一下网络拓扑结构: 1,Nginx 反向代理Server(HA): ①Nginx master:192.168.1.157 ②Nginx backup:192.168.1. ...
- Android:控件布局(绝对布局)AbsoluteLayout
绝对布局也叫坐标布局,指定元素的绝对位置,因为适应性很差,一般很少用到.可以使用RelativeLayout替代. 常用属性: android:layout_x --------组件x坐标 andr ...
- Apache Tomcat下载、安装、配置图文教程
本文已迁移到我的个人网站 http://www.wshunli.com 文章地址: http://www.wshunli.com/2016/03/19/Tomcat安装配置/ (整理截图.安装过程更加 ...
- CodeForces114E——Double Happiness(素数二次筛选)
Double Happiness On the math lesson a teacher asked each pupil to come up with his own lucky numbers ...
- Android TextView和EditText属性详解
TextView属性详解: autoLink设置 是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接.可选值(none/web /email/phone/map/all) ...
- Linux的分段和分页机制
1.分段机制 80386的两种工作模式 80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 分段机制 在保护模式下,80386虚地址空间可达16K个段,每 ...
- 24点C++程序实现 编程之美1.16
解法1,对于任意输入的四个数字,给出一个24点的解法,若无解,则没有输出. 原理参照下图(编程之美原书) 代码如下,仅供参考 // 1.16.cpp : Defines the entry point ...
- 液晶常用接口“LVDS、TTL、RSDS、TMDS”技术原理介绍
液晶常用接口“LVDS.TTL.RSDS.TMDS”技术原理介绍 1:Lvds Low-Voltage Differential Signaling 低压差分信号 1994年由美国国家半导体公司提出之 ...