题目链接:http://poj.org/problem?id=1797

Description

Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from to n. Your task is to find the maximum weight that can be transported from crossing (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input The first line contains the number of scenarios (city plans). For each city the number n of street crossings ( <= n <= ) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than . There will be at most one street between each pair of crossings.
Output The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at . Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.
Sample Input Sample Output Scenario #:

题目大意:有N个城市,有M条路,每条路上有一个最大承重量,问从1到N的道路上能通过的最大承重量是多少?

思路:就是求最大生成树上的最小值,dis【i】表示1到i的最大承重数

#include<stdio.h>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include <stack>
using namespace std;
#define ll long long
#define INF 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof(a))
#define N 1010
int Map[N][N];
int vis[N],dis[N],n,minn;
int dij(int s)
{
vis[s]=;
for(int i=;i<=n;i++)
dis[i]=Map[s][i];
for(int i=;i<n;i++)
{
int ans=-INF,k=;
for(int j=;j<=n;j++)
{
if(!vis[j] && ans<dis[j])
ans=dis[k=j]; /// 找到之中的最大值
}
vis[k]=;
for(int j=;j<=n;j++)
{
if(!vis[j])
{
int m=min(Map[k][j],dis[k]) ///经过k点到j点,取从1到k点的最大承重量与从k到j点之间的最大承重量之间较小的值
}
dis[j]=max(dis[j],k);///从1到j是否要经过k点,如果经过k点的最大承重量大就经过k点
}
}
return dis[n];///1到每个点的最大承重量
}
int main()
{
int t,m,x,b,l,con=;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&m);
met(Map,);
for(int i=;i<m;i++)
{
scanf("%d %d %d",&x,&b,&l);
Map[x][b]=Map[b][x]=l; ///道路是双向的
}
met(vis,);
printf("Scenario #%d:\n%d\n\n",con++,dij());
}
return ;
}

(POJ 1797) Heavy Transportation 最大生成树的更多相关文章

  1. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  2. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  3. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  4. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  5. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  6. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  8. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  9. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  10. POJ 1797 Heavy Transportation (Dijkstra)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. Codeforces Gym 100114 A. Hanoi tower 找规律

    A. Hanoi tower Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descript ...

  2. Android中Activity启动模式详解

    在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作.在Android中Activity的启动模式决定了Activity的启动运行方式. An ...

  3. mysql 5.6 binlog组提交

    mysql 5.6 binlog组提交实现原理 http://blog.itpub.net/15480802/viewspace-1411356 Redo组提交 Redo提交流程大致如下 lock l ...

  4. FTP服务器简易有效的访问方法

    访问FTP服务器传统的方法是使用专用的客户端程序,如CuteFTP,8UFTP等,也包括命令行的FTP客户端c:\windows\system32\ftp.exe程序. FTP服务器也有简易访问方法 ...

  5. 小白日记17:kali渗透测试之缓冲区溢出实例-windows,POP3,SLmail

    缓冲区溢出实例 缓冲区溢出原理:http://www.cnblogs.com/fanzhidongyzby/archive/2013/08/10/3250405.html 空间存储了用户程序的函数栈帧 ...

  6. 让 BAT 的 Offer 不再难拿

    随着各大公司春招的开始,很多小伙伴都行动起来了,我有幸能够加入百度并和大家分享自己的经验心得.由于我面试的都是比较大的公司,所以自然也是做了这方面的准备,因此这篇总结并不一定适合想去创业公司的同学.另 ...

  7. HTTP,TCP/IP,Socket

    HTTP:超文本传输协议,首先它是一个协议,并且是基于TCP/IP协议基础之上的应用层协议. TCP/IP协议是传输层协议,主要解决数据如何在网络中传输,HTTP是应用层协议,主要解决如何包装数据. ...

  8. tornado简单的验证码

    1.html代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  9. Android 高级UI设计笔记04:使用setDrawingCacheEnabled(boolean flag)提高绘图速度

    1. View组件显示的内容可以通过cache机制保存为bitmap, 使用到的API有: void setDrawingCacheEnabled(boolean flag) Bitmap getDr ...

  10. 前端必会html知识整理

    1.浏览器内核:         1.ie:trident(三叉戟)内核         2.firefox:gecko(壁虎)内核         3.safari:webkit(浏览器核心)内核 ...