文章作者:yx_th000 文章来源:Cherish_yimi (http://www.cnblogs.com/cherish_yimi/) 转载请注明,谢谢合作。
关键词:trie trie树 数据结构

[本文新址:http://www.ahathinking.com/archives/14.html ]

前几天学习了并查集和trie树,这里总结一下trie。
    本文讨论一棵最简单的trie树,基于英文26个字母组成的字符串,讨论插入字符串、判断前缀是否存在、查找字符串等基本操作;至于trie树的删除单个节点实在是少见,故在此不做详解。

l        Trie原理

Trie的核心思想是空间换时间。利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。

l        Trie性质

好多人说trie的根节点不包含任何字符信息,我所习惯的trie根节点却是包含信息的,而且认为这样也方便,下面说一下它的性质 (基于本文所讨论的简单trie树)

1.    字符的种数决定每个节点的出度,即branch数组(空间换时间思想)

2.    branch数组的下标代表字符相对于a的相对位置

3.    采用标记的方法确定是否为字符串。

4.    插入、查找的复杂度均为O(len),len为字符串长度

l        Trie的示意图

如图所示,该trie树存有abc、d、da、dda四个字符串,如果是字符串会在节点的尾部进行标记。没有后续字符的branch分支指向NULL

l        TrieTrie的优点举例

已知n个由小写字母构成的平均长度为10的单词,判断其中是否存在某个串为另一个串的前缀子串。下面对比3种方法:

1.    最容易想到的:即从字符串集中从头往后搜,看每个字符串是否为字符串集中某个字符串的前缀,复杂度为O(n^2)。

2.    使用hash:我们用hash存下所有字符串的所有的前缀子串。建立存有子串hash的复杂度为O(n*len)。查询的复杂度为O(n)* O(1)= O(n)。

3.    使用trie:因为当查询如字符串abc是否为某个字符串的前缀时,显然以b,c,d....等不是以a开头的字符串就不用查找了。所以建立trie的复杂度为O(n*len),而建立+查询在trie中是可以同时执行的,建立的过程也就可以成为查询的过程,hash就不能实现这个功能。所以总的复杂度为O(n*len),实际查询的复杂度只是O(len)。

解释一下hash为什么不能将建立与查询同时执行,例如有串:911,911456输入,如果要同时执行建立与查询,过程就是查询911,没有,然后存入9、91、911,查询911456,没有然后存入9114、91145、911456,而程序没有记忆功能,并不知道911在输入数据中出现过。所以用hash必须先存入所有子串,然后for循环查询。

而trie树便可以,存入911后,已经记录911为出现的字符串,在存入911456的过程中就能发现而输出答案;倒过来亦可以,先存入911456,在存入911时,当指针指向最后一个1时,程序会发现这个1已经存在,说明911必定是某个字符串的前缀,该思想是我在做pku上的3630中发现的,详见本文配套的“入门练习”。

l        Trie的简单实现(插入、查询)

 #include <iostream>using namespace std;
const int branchNum = ; //声明常量
6int i;
struct Trie_node
{
bool isStr; //记录此处是否构成一个串。
Trie_node *next[branchNum];//指向各个子树的指针,下标0-25代表26字符
Trie_node():isStr(false)
{
memset(next,NULL,sizeof(next));
}
}; 18 class Trie
{
20 public:
Trie();
void insert(const char* word);
bool search(char* word);
void deleteTrie(Trie_node *root);
25 private:
Trie_node* root;
}; 29 Trie::Trie()
{
root = new Trie_node();
} 34 void Trie::insert(const char* word)
{
Trie_node *location = root;
while(*word)
{
if(location->next[*word-'a'] == NULL)//不存在则建立
{
Trie_node *tmp = new Trie_node();
location->next[*word-'a'] = tmp;
}
location = location->next[*word-'a']; //每插入一步,相当于有一个新串经过,指针要向下移动
word++;
}
location->isStr = true; //到达尾部,标记一个串
} 50 bool Trie::search(char *word)
{
Trie_node *location = root;
while(*word && location)
{
location = location->next[*word-'a'];
word++;
}
return(location!=NULL && location->isStr);
} 61 void Trie::deleteTrie(Trie_node *root)
{
for(i = ; i < branchNum; i++)
{
if(root->next[i] != NULL)
{
deleteTrie(root->next[i]);
}
}
delete root;
} 73 void main() //简单测试
{
Trie t;
t.insert("a");
t.insert("abandon");
char * c = "abandoned";
t.insert(c);
t.insert("abashed");
if(t.search("abashed"))
printf("true\n");
}

trie树--详解的更多相关文章

  1. 转:trie树--详解

    前几天学习了并查集和trie树,这里总结一下trie. 本文讨论一棵最简单的trie树,基于英文26个字母组成的字符串,讨论插入字符串.判断前缀是否存在.查找字符串等基本操作:至于trie树的删除单个 ...

  2. [转] Trie树详解及其应用

    一.知识简介         最近在看字符串算法了,其中字典树.AC自动机和后缀树的应用是最广泛的了,下面将会重点介绍下这几个算法的应用.       字典树(Trie)可以保存一些字符串->值 ...

  3. Trie树详解

    1. 概述 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树.Trie一词来自retrieve,发音为/tri ...

  4. Trie树详解及其应用

    一.知识简介        最近在看字符串算法了,其中字典树.AC自动机和后缀树的应用是最广泛的了,下面将会重点介绍下这几个算法的应用.      字典树(Trie)可以保存一些字符串->值的对 ...

  5. Trie树详解(转)

    特别声明 本文只是一篇笔记类的文章,所以不存在什么抄袭之类的. 以下为我研究时参考过的链接(有很多,这里我只列出我记得的): Trie(字典树)的应用——查找联系人 trie树 Trie树:应用于统计 ...

  6. B树、Trie树详解

    查找(二) 散列表 散列表是普通数组概念的推广.由于对普通数组可以直接寻址,使得能在O(1)时间内访问数组中的任意位置.在散列表中,不是直接把关键字作为数组的下标,而是根据关键字计算出相应的下标. 使 ...

  7. trie字典树详解及应用

    原文链接    http://www.cnblogs.com/freewater/archive/2012/09/11/2680480.html Trie树详解及其应用   一.知识简介        ...

  8. 数据结构图文解析之:AVL树详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  9. Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】

    转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...

随机推荐

  1. hdu 2176 取(m)石子游戏

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 题意分析:给出M堆石子,两人交替取子,给出先手能否胜利. 不能输出No, 能则输出Yes并给出第 ...

  2. android ListView_新闻案例

    xml设计 <?xml version="1.0"?> -<RelativeLayout tools:context=".MainActivity&qu ...

  3. linux IO子系统和文件系统读写流程

        本文转载自:http://blog.csdn.net/kidd_3/article/details/6909097 Technorati 标签: I/O 子系统 --------------- ...

  4. Error: An App ID with identifier "*****" is not avaliable. Please enter a different string.

    Error: An App ID with identifier "*****" is not avaliable. Please enter a different string ...

  5. JQuery window.opener

    $('#Save').click(function () {    var parent = $(parent.document.body);    $(parent).find('input#add ...

  6. silverlight 用户浏览器未安装SL插件问题

    1.在Silverlight启动页面 <%@ Page Language="C#" AutoEventWireup="true" %> <!D ...

  7. for xml path以及sql合并查询

    sql中for xml path的用法. http://www.cnblogs.com/yanghaibo/archive/2010/06/04/1751405.html

  8. ORACLE AWR 和 ASH

    一.关于ASH 我们都知道,用户在 ORACLE 数据库中执行操作时,必然要创建相应的连接和会话, 其中,所有当前的会话信息都保存在动态性能视图 V$SESSION 中,通过该视图,DBA 可 以查看 ...

  9. Linq中延迟查询和立即查询

    //立即查询 public static void NowExecute() { var results = new int[]{5,4,3,2,1,6,7,8,9,0 }; int i = 0; v ...

  10. mvvm结构中数据的关联----wpf

    1.在视图中PlotView.xaml <Button Content="<<" Height="23" HorizontalAlignmen ...