集合上的动态规划---最优配对问题(推荐:*****) // uva 10911
/* 提醒推荐:五星 刘汝佳《算法竞赛入门经典》,集合上的动态规划---最优配对问题
题意:空间里有n个点P0,P1,...,Pn-1,你的任务是把它们配成n/2对(n是偶数),使得每个点恰好在一个点对中。所有点对中两点的距离之和应尽量小。 状态:d(i,S)表示把前i个点中,位于集合S中的元素两两配对的最小距离和
状态转移方程为:d(i,S)=min{|PiPj|+d(i-1,S-{i}-{j}} 书上的解法有些问题,正解见方法一 方法二:状态可以进行压缩,i的值其实隐藏在S中,S中最高位为1的即为i,所以需要一次查找,从n-1到0进行一次历编即可,整个运算下来,平均查找次数仅为2。而且方法二比方法一情况简单很多,也比较容易理解。 方法三:这道题用递归实现更好一些,因为只需要判断n为偶数的情况,这就是递归运算的好处,而非递归则需要全部都进行一次运算。 技巧:①处使用有个技巧,传递引用而不是下标,书写会方便很多。
*/ //方法一:正解。。。
#include <cstdio>
#include <cstring>
#include <cmath>
const int nMax=21;
const double INF=1e10;
int n;
struct Node
{
int x,y,z;
}node[nMax];
double d[nMax][1<<nMax];
void init()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d %d %d",&node[i].x,&node[i].y,&node[i].z);
}
double min(double a,double b)
{
return a<b?a:b;
}
double dis(Node &a,Node &b)//①
{
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
void solve()
{
for(int i=0;i<n;i++)
{
for(int s=0;s<(1<<(i+1));s++)
{
if(s==0) d[i][s]=0;
else d[i][s]=INF;
if((s & (1<<i)))
{
for(int j=i-1;j>=0;j--)
if((s & (1<<j)))
d[i][s]=min(d[i][s],dis(node[i],node[j])+d[i-1][s^(1<<i)^(1<<j)]);
}
else if(i!=0)
{
d[i][s]=d[i-1][s];
}
}
}
}
int main()
{
freopen("f://data.in","r",stdin);
init();
solve();
printf("%.3lf\n",d[n-1][(1<<n)-1]);
return 0;
} //方法二:推荐。。。
//#define TEST
#include <cstdio>
#include <cstring>
#include <cmath>
const int nMax=21;
const double INF=1e10;
int n,S;
struct Node
{
int x,y,z;
}node[nMax];
double d[1<<nMax];
void init()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d %d %d",&node[i].x,&node[i].y,&node[i].z);
S=1<<n;
for(int i=1;i<S;i++)
d[i]=-1;
d[0]=0;
}
double min(double a,double b)
{
return a<b?a:b;
}
double dis(Node &a,Node &b)
{
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
double dp(int p)
{
if(d[p]!=-1) return d[p];
d[p]=INF;
int i,j;
for(i=n-1;i>=0;i--)
if(p & (1<<i))
break;
for(j=i-1;j>=0;j--)
if(p & (1<<j))
d[p]=min(d[p],dis(node[i],node[j])+dp(p^(1<<i)^(1<<j)));
#ifdef TEST
printf("%d %d\n",p,d[p]);
#endif
return d[p];
}
int main()
{
freopen("f://data.in","r",stdin);
init();
printf("%.3lf\n",dp(S-1));
return 0;
} //方法三:递归实现
#include <cstdio>
#include <cstring>
#include <cmath>
const int nMax=21;
const double INF=1e10;
int n,S;
struct Node
{
int x,y,z;
}node[nMax];
double d[1<<nMax];
void init()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d %d %d",&node[i].x,&node[i].y,&node[i].z);
S=1<<n;
d[0]=0;
}
double min(double a,double b)
{
return a<b?a:b;
}
double dis(Node &a,Node &b)
{
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
void solve()
{
for(int s=1;s<S;s++)
{
int i,j;
d[s]=INF;
for(i=n-1;i>=0;i--)
if(s & 1<<i)
break;
for(j=i-1;j>=0;j--)
if(s & 1<<j)
d[s]=min(d[s],dis(node[i],node[j])+d[s^(1<<i)^(1<<j)]);
}
}
int main()
{
freopen("f://data.in","r",stdin);
init();
solve();
printf("%.3lf\n",d[S-1]);
return 0;
}
集合上的动态规划---最优配对问题(推荐:*****) // uva 10911的更多相关文章
- 最优配对问题(集合上的动态规划) —— 状压DP
题目来源:紫书P284 题意: 给出n个点的空间坐标(n为偶数, n<=20), 把他们配成n/2对, 问:怎样配对才能使点对的距离和最小? 题解: 设dp[s]为:状态为s(s代表着某个子集) ...
- UVA 10911 Forming Quiz Teams(dp + 集合最优配对问题)
4th IIUC Inter-University Programming Contest, 2005 G Forming Quiz Teams Input: standard input Outpu ...
- DP入门(2)——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...
- 9.2 DAG上的动态规划
在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...
- 2019 年在 Raspberry Pi 「树莓派」上运行的 10 个操作系统推荐
原文:2019 年在 Raspberry Pi 「树莓派」上运行的 10 个操作系统推荐 image Raspberry Pi** 是一款基于 ARM 的单板计算机,默认运行一款称为 Raspbian ...
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- DAG上的动态规划之嵌套矩形
题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...
- DAG 上的动态规划(训练指南—大白书)
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述: ...
- Oracle 12C -- 在相同的列的集合上创建多个索引
在12C中,可以在相同的列的集合上创建多个索引,但是多个索引的类型要不同.同一时刻,只有一个是可见的. SQL> create table emp_tab as select * from em ...
随机推荐
- 20141212--C#对象比较
static void Main(string[] args) { Class2 oo = new Class2(); oo.shu = ; oo.zi = "你"; Class2 ...
- OpenGL-渲染管线的流程(有图有真相)
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440 学习shader之前必须知道的事情,shader(着色语言)到 ...
- 8个3D视觉效果的HTML5动画欣赏
现在的网页中应用了越来越多的3D应用,特别是基于HTML5 Canvas的动画特效,让用户有一种非常震撼的视觉体验.本文收集了8个非常炫酷的3D视觉效果的HTML5动画,都有源代码分享,你可以学习你感 ...
- path 环境变量
path(环境变量)是dos以前的内部命令,windows继续沿用至今.用作运行某个命令的时候,本地查找不到某个命令或文件,会到这个声明的目录中去查找.一般设定java的时候为了在任何目录下都可以运行 ...
- HDU 5024 Wang Xifeng's Little Plot(枚举)
题意:求一个图中只有一个90°拐点的路的最大长度. 分析:枚举每一个为'.'的点,求出以该点为拐点的八种路中的最大长度,再比较所有点,得出最大长度即可. 如上样例,这样是个90°的角... 注意:最多 ...
- OOA、OOD、OOP
复习 OOA.OOD.OOP OOA Object-Oriented Analysis:面向对象分析方法 是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题.OOA与结构 ...
- 从零开始搭建TestCpp工程
目标: 创建一个测试工程,测试工程以列表的方式展示,没一个列表项对应一个场景 1. 创建cocos2d-x工程 现在采用脚本的方式来创建,好处是一次可以创建N个项目的工程. 首先 ...
- mycat1.5~1.6的一个bug
以下语句在mysql单库中执行正常: SELECT * FROM device WHERE devicetype='AMS.Monitoring.XlCloud.QKL8154.XLCloudDevi ...
- IntellijIDEA 使用技巧
1:显示工具栏目 toolbar:view ->ToolBar 2:加载源码 new project ->选择java project ->选择源码所在目录 ->ok
- android-support-xxxx.jar NoClassDefFoundError
当你的项目出现以下红色提示的时候,要小心了,因为很可能因为这个错误而导致解释不通的异常出现. Found 2 versions of android-support-v4.jar in the dep ...