bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
Sample Output
【数据规模和约定】
100%的数据满足N, M ≤ 107。




#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+;
const int MOD = ; ll mu[N],su[N],sz,np[N];
int n,m,mx; void get_mu()
{
int i,j;
mu[]=;
for(i=;i<=mx;i++) {
if(!np[i])
su[++sz]=i,mu[i]=-;
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
mu[i*su[j]]=;
else
mu[i*su[j]]=-mu[i];
}
}
for(i=;i<=mx;i++)
mu[i]=(mu[i-]+(ll)(mu[i]*i*i)%MOD)%MOD;
}
ll t(ll x,ll y)
{
return ((ll)(x*(x+)/%MOD)*(ll)(y*(y+)/%MOD)%MOD);
}
ll F(int n,int m)
{
int i,last; ll ans=;
for(i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+(ll)(mu[last]-mu[i-])*t(n/i,m/i)%MOD)%MOD;
}
return ans;
}
int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
mx=n;
get_mu();
int last; ll ans=;
for(int i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+((ll)(i+last)*(last-i+)/*F(n/i,m/i)%MOD))%MOD;
}
printf("%lld",(ans+MOD)%MOD);
return ;
}
【优化】
我是图片的搬运工

(H打错为F 233)
积性函数的约数和也是积性函数,H(D) 可以用线性筛求,然后求下前缀和就好了。
至此为止,可以解决2693的多查询问题了。
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+;
const int MOD = ; ll sum[N],su[N],sz,np[N];
int n,m,mx; void get_mu()
{
int i,j;
sum[]=;
for(i=;i<=mx;i++) {
if(!np[i]) {
su[++sz]=i,
sum[i]=(i-(ll)i*i)%MOD;
}
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
sum[i*su[j]]=(su[j]*sum[i])%MOD;
else
sum[su[j]*i]=(sum[su[j]]*sum[i])%MOD;
}
}
for(i=;i<=mx;i++)
sum[i]=(sum[i]+sum[i-])%MOD;
}
ll S(ll x,ll y)
{
return ((ll)(x*(x+)/%MOD)*(ll)(y*(y+)/%MOD)%MOD);
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
mx=1e7;
get_mu();
int T; scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
mx=n; get_mu();
int last; ll ans=;
for(int i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+(ll)S(n/i,m/i)*(sum[last]-sum[i-])%MOD)%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
return ;
}
bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- 如何在JavaScript里防止事件函数的高频触发和调用
网页中JavaScript最基本的功能是监听或响应用户的动作,这非常的有用.用户的动作有些频率非常高,有的十分罕见.有些监听器函数的执行如闪电般完成,而有些繁重的会把浏览器拖死.拿浏览器窗口的resi ...
- HTML5的本地存储 LocalStorage
localStorage顾名思义,就是本地存储的意思,在以前很长一段时间,要想在客户端存 储一些配置及登录信息等数据都只能通过COOKIE或flash的方式,如今html5来临,也 带来了更强大的本地 ...
- js解决checkbox全选和反选的问题
function SelectAll() { var checkboxs=document.getElementsByName("chk_list"); for (var i=0; ...
- windows下游戏服务器端框架Firefly安装说明及demo运行
原地址:http://blog.csdn.net/wangqiuyun/article/details/11150503 本来公司一个网游服务器端选定了pomelo框架,后来出了个Firefly,为做 ...
- Interface Serializable
public interface Serializable Serializability of a class is enabled by the class implementing the ja ...
- 动态规划晋级——HDU 3555 Bomb【数位DP详解】
转载请注明出处:http://blog.csdn.net/a1dark 分析:初学数位DP完全搞不懂.很多时候都是自己花大量时间去找规律.记得上次网络赛有道数位DP.硬是找规律给A了.那时候完全不知数 ...
- Apache Wamp WampServer 配置多端口 多站点 虚拟目录
第一步:配置Apache 的 httpd.conf #Listen 0.0.0.0:80Listen 80Listen 81 第二步:开启虚拟站点 所属文件:httpd.conf #Virtual h ...
- poj3月题解
poj2110 二分答案+bfs判定 poj2112 二分答案+最大流判定(二分答案真乃USACO亲儿子) poj1986 裸的LCA,值得注意的是,树中任意两点的距离可以等于这两点到根的距离减去2* ...
- UVa 808 (建坐标系、找规律) Bee Breeding
题意: 如图,按照图中的规律给这些格子编号.给出两个格子的编号,求从一个格子到另一个格子的最少步数.(一步只能穿过有有公共边的格子) 分析: 根据高中数学知识,选任意两个不共线的向量,就能表示平面上所 ...
- 嵌入式Linux系统运行流程图
/************************************************************************ * 嵌入式Linux系统运行流程图 * 说明: * ...