bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
Sample Output
【数据规模和约定】
100%的数据满足N, M ≤ 107。




#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+;
const int MOD = ; ll mu[N],su[N],sz,np[N];
int n,m,mx; void get_mu()
{
int i,j;
mu[]=;
for(i=;i<=mx;i++) {
if(!np[i])
su[++sz]=i,mu[i]=-;
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
mu[i*su[j]]=;
else
mu[i*su[j]]=-mu[i];
}
}
for(i=;i<=mx;i++)
mu[i]=(mu[i-]+(ll)(mu[i]*i*i)%MOD)%MOD;
}
ll t(ll x,ll y)
{
return ((ll)(x*(x+)/%MOD)*(ll)(y*(y+)/%MOD)%MOD);
}
ll F(int n,int m)
{
int i,last; ll ans=;
for(i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+(ll)(mu[last]-mu[i-])*t(n/i,m/i)%MOD)%MOD;
}
return ans;
}
int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
mx=n;
get_mu();
int last; ll ans=;
for(int i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+((ll)(i+last)*(last-i+)/*F(n/i,m/i)%MOD))%MOD;
}
printf("%lld",(ans+MOD)%MOD);
return ;
}
【优化】
我是图片的搬运工

(H打错为F 233)
积性函数的约数和也是积性函数,H(D) 可以用线性筛求,然后求下前缀和就好了。
至此为止,可以解决2693的多查询问题了。
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+;
const int MOD = ; ll sum[N],su[N],sz,np[N];
int n,m,mx; void get_mu()
{
int i,j;
sum[]=;
for(i=;i<=mx;i++) {
if(!np[i]) {
su[++sz]=i,
sum[i]=(i-(ll)i*i)%MOD;
}
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
sum[i*su[j]]=(su[j]*sum[i])%MOD;
else
sum[su[j]*i]=(sum[su[j]]*sum[i])%MOD;
}
}
for(i=;i<=mx;i++)
sum[i]=(sum[i]+sum[i-])%MOD;
}
ll S(ll x,ll y)
{
return ((ll)(x*(x+)/%MOD)*(ll)(y*(y+)/%MOD)%MOD);
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
mx=1e7;
get_mu();
int T; scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
mx=n; get_mu();
int last; ll ans=;
for(int i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+(ll)S(n/i,m/i)*(sum[last]-sum[i-])%MOD)%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
return ;
}
bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- mysql 权限管理
参考: http://www.cnblogs.com/Richardzhu/p/3318595.html 一.MySQL权限简介 关于mysql的权限简单的理解就是mysql允许你做你全力以内 ...
- jq获取元素到底部的距离
// var wh = $(window).height(),//是文档窗口高度 // ot = $("#icoimg").offset().top,//是标签距离顶部高度 // ...
- BZOJ 4036 [HAOI2015] Set 解题报告
首先我们不能一位一位的考虑,为什么呢? 你想想,你如果一位一位地考虑的话,那么最后就只有 $n$ 个数字,然而他给了你 $2^n$ 个数字,怎么看都不对劲呀.(我是因为这样子弄没过样例才明白的) 所以 ...
- Window8 进不了PE如何设置BIOS
如题,如今进入Win8时代,很多新出的机器都自带了WIN8.但是童鞋们想进PE进行操作的时候,发现进不了. 更改BIOS以下2处设置,即可使用第三方引导安装系统:Boot->Launch CSM ...
- sequel 连接不上,命令行能连上
Sequel pro won't connect anymore I'm running into some trouble right now. I worked yesterday on my d ...
- 对JAVA动态代理的理解
叫动态代理就代表着有“静态代理”这回事. 而且,通常“动态”至少听着更NB一点. 关键就在于不明白啥叫“动”,这个得跟“静”比较下. 在我的理解,静态代理得自己声明一个类,实现跟被代理对象同样的接口. ...
- Chp2: Linked List
2.2 Implement an algorithm to find the kth to last element of a singly linked list. Just using " ...
- HDU 5039 Hilarity
题意:一棵树n个结点,每条边有0.1两种权值,每次询问权值为奇数的路径数目,或者改变某一条边的权值. 分析:这个题目很巧妙低利用了异或和的特性,dfs得到每个点到根结点的权值异或和,然后奇数则为1,偶 ...
- [itint5]最大子矩阵和
http://www.itint5.com/oj/#39 最大子矩阵和,复杂度O(n^3).利用了最大子段和的方法. int maxRectSum(vector<vector<int> ...
- 摄像头(3)调用系统拍照activity来拍照
import android.app.Activity; import android.content.Intent; import android.content.pm.PackageManager ...