HADOOP中可以分为两个大的模块,存储模块和计算模块。HDFS作为存储模块,JobTracker,TaskTracker构成计算模块。
 
1.HADOOP的文件是以HDFS格式存储的
 
HDFS是一种文件系统,专为大规模分布式数据处理而设计的,我们可以把一个很大的数据集,在HDFS中存储为单个文件。HDFS中采取的是master/slave的结构,其中master我们称为NameNode,slave我们称为DataNode。HDFS中包括以下三个构件,NameNode,DataNode,Secondary NameNode.
 
NameNode:NameNode位于HDFS的主端,它指导从端的DataNode执行底层的I/O任务,它跟中文件如何被分割成文件块,而这些块又被哪些节点存储,以及分布式文件系统的整体运行状态是否正常。
 
DataNode:NameNode告知客户端每个数据块驻留在哪个DataNode,客户端直接与DataNode守护进行通讯,来处理与数据块相对应的本地本件,而后,DataNode会与其他DataNode进行通讯,复制这些数据块以实现冗余。
 
Secondary NameNode: Secondary NameNode是一个用来监控HDFS状态的辅助后台程序。就想NameNode一样,每个集群都有一个Secondary NameNode,并且部署在一个单独的服务器上。Secondary NameNode不同于NameNode,它不接受或者记录任何实时的数据变化,但是,它会与NameNode进行通信,以便定期地保存HDFS元数据的快照。由于NameNode是单点的,通过Secondary NameNode的快照功能,可以将NameNode的宕机时间和数据损失降低到最小。同时,如果NameNode发生问题,Secondary NameNode可以及时地作为备用NameNode使用。
 

2.计算模块由JobTracker,TaskTracker组成:

 

JobTracker:JobTracker后台程序用来连接应用程序与Hadoop。用户代码提交到集群以后,由JobTracker决定哪个文件将被处理,并且为不同的task分配节点。同时,它还监控所有的task,一旦某个task失败了,JobTracker就会自动重新开启这个task,在大多数情况下这个task会被放在不用的节点上。每个Hadoop集群只有一个JobTracker,一般运行在集群的Master节点上。

TaskTracker:TaskTracker与负责存储数据的DataNode相结合,其处理结构上也遵循主/从架构。JobTracker位于主节点,统领MapReduce工作;而TaskTrackers位于从节点,独立管理各自的task。每个TaskTracker负责独立执行具体的task,而JobTracker负责分配task。虽然每个从节点仅有一个唯一的一个TaskTracker,但是每个TaskTracker可以产生多个java虚拟机(JVM),用于并行处理多个map以及reduce任务。TaskTracker的一个重要职责就是与JobTracker交互。如果JobTracker无法准时地获取TaskTracker提交的信息,JobTracker就判定TaskTracker已经崩溃,并将任务分配给其他节点处理。

 

hadoop架构的更多相关文章

  1. Hadoop架构的初略总结(2)

    Hadoop架构的初略总结(2) 回顾一下前文,我们总结了以下几个方面.我们为什么需要Hadoop:Hadoop2.0生态系统的构成:Hadoop1.0中HDFS和MapReduce的结构模型. 我们 ...

  2. Hadoop架构的初略总结(1)

    Hadoop架构的初略总结(1) Hadoop是一个开源的分布式系统基础架构,此架构可以帮助用户可以在不了解分布式底层细节的情况下开发分布式程序. 首先我们要理清楚几个问题. 1.我们为什么需要Had ...

  3. Hadoop 架构与原理

    1.1.   Hadoop架构 Hadoop1.0版本两个核心:HDFS+MapReduce Hadoop2.0版本,引入了Yarn.核心:HDFS+Yarn+Mapreduce Yarn是资源调度框 ...

  4. Hadoop架构及集群

    Hadoop是一个由Apache基金会所开发的分布式基础架构,Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了 ...

  5. Hadoop架构: 流水线(PipeLine)

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 流水线(PipeLine),简单地理解就是客户端向DataNode传输数据(Packet)和接收Dat ...

  6. Hadoop架构: HDFS中数据块的状态及其切换过程,GS与BGS

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 首先,我们要提出HDFS存储特点: 1.高容错 2.一个文件被切成块(新版本默认128MB一个块)在不 ...

  7. Hadoop架构: 关于Recovery (Lease Recovery , Block Recovery, PipeLine Recovery)

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 在HDFS中,有三种Recovery 1.Lease Recovery 2.Block Recover ...

  8. hadoop知识点总结(一)hadoop架构以及mapreduce工作机制

    1,为什么需要hadoop 数据分析者面临的问题 数据日趋庞大,读写都出现性能瓶颈: 用户的应用和分析结果,对实时性和响应时间要求越来越高: 使用的模型越来越复杂,计算量指数级上升. 期待的解决方案 ...

  9. 1、Hadoop架构

    1.Hadoop 是一个能够对大量数据进行分布式处理的软件框架,实现了Google的MapReduce编程模型和框架,能够把应用程序分割成许多小的工作单元放到任何集群节点上执行. 作业(job):一个 ...

随机推荐

  1. SQL Server 2008 表值参数用法

    下面的示例使用 Transact-SQL 并演示如何执行以下操作:创建表值参数类型,声明变量来引用它,填充参数列表,然后将值传递到存储过程. USE AdventureWorks; GO /*创建表值 ...

  2. bootstrap表格多样式及代码

    <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...

  3. Android进阶笔记18:选用合适的IPC方式

    1. 相信大家都知道Android进程间通信方式很多,比如AIDL.Messenger等等,接下来我就总结一下这些IPC方式优缺点. 2. IPC方式的优缺点和适用场景 3. 附加:使用Intent实 ...

  4. error和exception的区别,RuntimeException和非RuntimeException的区别

    error和exception的区别,RuntimeException和非RuntimeException的区别   1. 异常机制       异常机制是指当程序出现错误后,程序如何处理.具体来说, ...

  5. LRU在MySQL缓存池的实现

    MySQL的InnoDB引擎设置有索引及数据缓存池,其中用到的LRU算法来维持缓存的命中率 这里用到了顺序表list来作为缓冲池,每个数据节点称为block 该算法采用“中点插入法”:当插入一个新bl ...

  6. Sphinx 全文检索

    什么是全文检索: 全文检索是指以文档的全部文本信息作为检索对象的一种信息检索技术.检索的对象有可能是文章的标题,也有可能是文章的作者,也有可能是文章摘要或内容. 简介: Sphinx是由俄罗斯人And ...

  7. hdu 4081 最小生成树+树形dp

    思路:直接先求一下最小生成树,然后用树形dp来求最优值.也就是两遍dfs. #include<iostream> #include<algorithm> #include< ...

  8. hdu 1530 最大团模板

    说明摘自:pushing my way 的博文 最大团 通过该博主的代码,总算理解了最大团问题,但是他实现时的代码效率却不算太高.因此在最后献上我的模板.加了IO优化目前的排名是: 6 yejinru ...

  9. jemter转换报告生成html格式报告

    前言: 结合上篇,因为使用Jenkins做集成,jmeter的结果肯定需要生产一个报告,如果按原本的jmt格式生成,肯定是不行的,现在就需要对报告格式进行转换 使用工具: ant:jmeter可以通过 ...

  10. poj1328

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 73588   Accepted: 16 ...