本节主要介绍一下Pandas的另一个数据结构:DataFrame,本文的内容来源:https://www.dataquest.io/mission/147/pandas-internals-dataframes

在上一节中已经介绍过了Series对象,Series对象可以理解为由一列索引和一列值,共两列数据组成的结构。而DataFrame就是由一列索引和多列值组成的结构,其中,在DataFrame中的每一列都是一个Series对象。

 

行选择

不管何时,你调用了一个方法返回或者打印一个DataFrame时,最左边的一列必然是索引值,可以通过index属性来直接访问DataFrame的索引值,本节所用的数据来源于:https://github.com/fivethirtyeight/data/tree/master/fandango

import pandas as pd

fandango = pd.read_csv('fandango_score_comparison.csv')

# print(fandango.head(2))  输出前两行

print(fandango.index)  # 打印索引列的值

这是原始的数据:

 

在Series中,每一个索引都对应着一个值,在DataFrame中,每一个索引则对应着一行的数据,可以通过几种方法来选择多数据

# 选择前五行

fandango[0:5]

# 选择索引号140及其以后的行

fandango[140:]

# 只选择索引号为50的那一行

fandango.loc[50]

# 选择索引号为45和90的两行

fandango.loc[[45,90]]

总结:要选择连续的多行,就是用列表的切片功能,选择一行就是用loc[]方法或者iloc[]方法(二者的区别可以看我的另一篇博客“Pandas之让人容易混淆的行选择和列选择“)

当选择一行的数据时,Pandas会返回一个Series对象,当选择多行数据时,会返回一个DataFrame对象

 

自定义索引

Pandas可以使用某一列来重新自定义DataFrame的索引,通过set_index()方法来实现,该方法主要有两个参数:

  • inplace,如果设置为True就不会返回一个新的DataFrame,而是直接修改该DataFrame
  • drop,如果设置为True,就会移出掉该列的数据
# 我要把电影名称作为该DataFrame的索引

fandango = pd.read_csv('fandango_score_comparison.csv')

fandango_films = fandango.set_index('FILM', inplace=False, drop=True)

可以看到索引值已经变了,并且该DataFrame中也移除了名为FILM的列(该列变成了索引)

使用了自定义的索引后,类似于之前的行选择一样进行选择,只是把整数索引换成了电影名称而已,例如

# 使用切片或者loc[]函数

fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]

fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]

# 指定要返回的电影

fandango_films.loc['Kumiko, The Treasure Hunter (2015)']

# 选择要返回的多部电影

movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']

fandango_films.loc[movies]

 

 

Apply方法

apply()方法是运行在Series对象中的,而Pandas中任何单独一列或者单独一行的数据就是一个Series对象,apply()方法中要传递的是一个向量运算方法

如果该方法返回一个单独的值(譬如将整列(行)的值相加),那么就会返回一个Series,该Series保存的是全部列的运行结果,如下

import numpy as np

# 得出每一列的数据类型

types = fandango_films.dtypes

# 选择具有浮点数据的那些列

float_columns = types[types.values == 'float64'].index

float_df = fandango_films[float_columns]

# 对选择的列计算总分,在lambda中的x是一个Series,代表了某一列

count = float_df.apply(lambda x: np.sum(x))

如果该方法没有合并运算结果(譬如将整列(行)的值都分别乘2),那么就会返回一个DataFrame。如下

double_df = float_df.apply(lambda x: x*2)

 

如果要在行上使用apply()方法,只要指定参数axis = 1即可

# 计算每部电影的平均分

means = float_df.apply(lambda x: np.mean(x), axis = 1)

Pandas简易入门(四)的更多相关文章

  1. Pandas简易入门(二)

    目录:     处理缺失数据     制作透视图     删除含空数据的行和列     多行索引     使用apply函数   本节主要介绍如何处理缺失的数据,可以参考原文:https://www. ...

  2. Pandas简易入门(三)

    本节主要介绍一下Pandas的数据结构,本文引用的网址:https://www.dataquest.io/mission/146/pandas-internals-series 本文所使用的数据来自于 ...

  3. Pandas简易入门(一)

    目录: 读取数据 索引 选择数据 简单运算 声明,本文引用于:https://www.dataquest.io/mission/8/introduction-to-pandas (建议阅读原文) Pa ...

  4. 机器学习简易入门(四)- logistic回归

    摘要:使用logistic回归来预测某个人的入学申请是否会被接受 声明:(本文的内容非原创,但经过本人翻译和总结而来,转载请注明出处) 本文内容来源:https://www.dataquest.io/ ...

  5. Python pandas快速入门

    Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...

  6. crontab简易入门

    前言 crontab是Unix和Linux用于设置周期性被执行的指令,是互联网很常用的技术,很多任务都会设置在crontab循环执行,如果不使用crontab,那么任务就是常驻程序,这对你的程序要求比 ...

  7. 【原创】NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战

    概述 本文演示的是一个Android客户端程序,通过UDP协议与两个典型的NIO框架服务端,实现跨平台双向通信的完整Demo. 当前由于NIO框架的流行,使得开发大并发.高性能的互联网服务端成为可能. ...

  8. python学习笔记--Django入门四 管理站点--二

    接上一节  python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...

  9. Swift语法基础入门四(构造函数, 懒加载)

    Swift语法基础入门四(构造函数, 懒加载) 存储属性 具备存储功能, 和OC中普通属性一样 // Swfit要求我们在创建对象时必须给所有的属性初始化 // 如果没办法保证在构造方法中初始化属性, ...

随机推荐

  1. C语言第五节scanf函数

    变量的内存分析 字节和地址 为了更好地理解变量在内存中的存储细节,先来认识一下内存中的"字节"和"地址". 内存以"字节为单位" 0x表示的 ...

  2. Old Calculator

    描述 szhhck have an old calculator bought 5 years ago.he find the old machine can just calculate expre ...

  3. python(1) - 数据类型和变量

    数据类型: 整数:就是整数,包括正整数,0,负整数 浮点数: 通俗点说,就是小数 长整数: 就是比较长的整型,通常后面会跟一个L 字符串: 字符串需要用""或''括起来.单引号和双 ...

  4. Objective-C ,ios,iphone开发基础:快速实现一个简单的图片查看器

    新建一个single view 工程: 关闭ARC , 在.xib视图文件上拖放一个UIImageView  两个UIButton ,一个UISlider ,布局如图. 并为他们连线, UIImage ...

  5. HDU 1043 Eight (A* + HASH + 康托展开)

    Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  6. [改善Java代码]避免在构造函数中初始化其他类

    建议35: 避免在构造函数中初始化其他类 构造函数是一个类初始化必须执行的代码,它决定着类的初始化效率,如果构造函数比较复杂,而且还关联了其他类,则可能产生意想不到的问题,我们来看如下代码: publ ...

  7. SQL Server 2005中约束

    在SQL Server 2005中有6种约束:主键约束(primary key constraint).惟一性约束(unique constraint).检查约束(check constraint). ...

  8. 编写SASS的一些技巧

    更好的为变量命名 变量是Sass中最简单的特性之一,但有时候也会使用不当.创建站点范围内有语义化的变量,是不可或缺的工作.如果命名不好,他会变得难以理解和重复使用. 这里有一些命名变量的小技巧,提供参 ...

  9. Java Concurrency - ThreadLocal, 本地线程变量

    共享数据是多线程应用最常见的问题之一,但有时我们需要为每个线程保存一份独立的变量.Java API 提供了 ThreadLocal 来解决这个问题. 一个 ThreadLocal 作用的例子: imp ...

  10. Slickflow.NET 开源工作流引擎基础介绍(一) -- 引擎基本服务接口API介绍

    1. 工作流术语图示                                              图1 流程图形的BPMN图形元素表示 1) 流程模型定义说明流程(Process):是企 ...