POJ1179Polygon(DP)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4456 | Accepted: 1856 |
Description

On the first move, one of the edges is removed. Subsequent moves involve the following steps:
�pick an edge E and the two vertices V1 and V2 that are linked by E; and
�replace them by a new vertex, labelled with the result of performing the operation indicated in E on the labels of V1 and V2.
The game ends when there are no more edges, and its score is the label of the single vertex remaining.
Consider the polygon of Figure 1. The player started by removing
edge 3. After that, the player picked edge 1, then edge 4, and, finally,
edge 2. The score is 0.

Write a program that, given a polygon, computes the highest possible
score and lists all the edges that, if removed on the first move, can
lead to a game with that score.
Input
program is to read from standard input. The input describes a polygon
with N vertices. It contains two lines. On the first line is the number
N. The second line contains the labels of edges 1, ..., N, interleaved
with the vertices' labels (first that of the vertex between edges 1 and
2, then that of the vertex between edges 2 and 3, and so on, until that
of the vertex between edges N and 1), all separated by one space. An
edge label is either the letter t (representing +) or the letter x
(representing *).
3 <= N <= 50
For any sequence of moves, vertex labels are in the range [-32768,32767].
Output
program is to write to standard output. On the first line your program
must write the highest score one can get for the input polygon. On the
second line it must write the list of all edges that, if removed on the
first move, can lead to a game with that score. Edges must be written in
increasing order, separated by one space.
Sample Input
4
t -7 t 4 x 2 x 5
Sample Output
33
1 2 题目的意思就是给n个数,n个两两数之间的运算符(只有+和*)问首先去掉哪个运算符号之后可以让其他的数按照一定的方法计算后结果最大。
其实结题思路还是比较好想到的,枚举(枚举去掉的符号)+DP(记忆化搜索)就可以做到。但这里有一个天坑,就是负负得正,所以不能单一的枚举最大值,而要同时DP最小值。
计算最大值:
加法 max(i,j) = max(i,k)+max(k,j);
乘法 max(i,j) = MAX(max(i,k)*max(k,j),max(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
计算最小值:
加法 min(i,j) = min(i,k)+min(k,j);
乘法 min(i,j) = MIN(max(i,k)*max(k,j),min(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
见代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <stack>
#include <set>
#include <queue>
#define MAX(a,b) (a) > (b)? (a):(b)
#define MIN(a,b) (a) < (b)? (a):(b)
#define mem(a) memset(a,0,sizeof(a))
#define INF 1000000007
#define MAXN 20005
using namespace std; bool op[];
int num[],dp_max[], dp_min[], n;
bool vis_max[],vis_min[];
int DP_MIN(int i,int j);
int DP_MAX(int i,int j); int DP_MAX(int i,int j)//DP求区间最大值
{
int u = i*+j;
if(vis_max[u])return dp_max[u];
vis_max[u]=;
if(j-i <= )
{
if(j==i)return dp_max[u]=num[i-];
if(!op[i])return dp_max[u]=num[i-]+num[i];
else return dp_max[u]=num[i-]*num[i];
}
dp_max[u] = -INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_max[u] = MAX(dp_max[u], ll+rr);
else dp_max[u] = MAX(dp_max[u], MAX(ll*rr,MAX(l*r,MAX(l*rr,r*ll))));
}
return dp_max[u];
} int DP_MIN(int i,int j)//DP求区间最小值
{
int u = i*+j;
if(vis_min[u])return dp_min[u];
vis_min[u]=;
if(j-i <= )
{
if(j==i)return dp_min[u]=num[i-];
if(!op[i])return dp_min[u]=num[i-]+num[i];
else return dp_min[u]=num[i-]*num[i];
}
dp_min[u] = INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_min[u] = MIN(dp_min[u], l+r);
else dp_min[u] = MIN(dp_min[u], MIN(ll*rr,MIN(l*r,MIN(l*rr,r*ll))));
}
return dp_min[u];
} int main()
{
while(~scanf("%d%*c",&n))
{
mem(op);mem(dp_max);
mem(num);mem(vis_min);
mem(vis_max);
int max=-INF,i;
char ch;
for(i=;i<n;i++)
{
scanf("%c %d%*c",&ch,&num[i]);
op[i]=op[i+n]=(ch=='x');
num[i+n]=num[i];
}
for(i=;i<n;i++)
{
max=MAX(max,DP_MAX(i+,i+n));
}
printf("%d\n",max);
int ok=;
for(i=;i<n;i++)
{
if(DP_MAX(i+,i+n) == max)
{
if(ok){printf("%d",i+);ok=;}
else printf(" %d",i+);
}
}
printf("\n");
}
return ;
}
POJ1179Polygon(DP)的更多相关文章
- POJ1179Polygon(区间dp)
啊~~ 被dp摁在地上摩擦的人 今天做了一道区间dp的题(POJ1179Polygon) 题目: Polygon Time Limit: 1000MS Memory Limit: 10000K T ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
随机推荐
- 使用netcat进行反弹链接的shellcode
from:http://morgawr.github.io/hacking/2014/03/29/shellcode-to-reverse-bind-with-netcat/ 这篇文章主要是谈,在远程 ...
- HttpContext.Current.RewritePath方法重写URL
if (!IsPostBack) { //如果请求ID为空,则重写URL为:~/index.aspx?ID=shouji.115sou.com if (Request.QueryString[&quo ...
- Python - re - 正则表达式 - 怎么用
<python cookbook> - 1.18 - 一次完成多个替换 这个blog介绍正则,写得不错,而且,一如既往的‘长’. 1. re.escape(string) THIS,说明函 ...
- operator.itemgetter的用法【转】
operator.itemgetter函数 operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号),下面看例子. a = [,, ...
- ORACLE CLIENT客户端安装步骤详解
下载地址: http://download.oracle.com/otn/nt/oracle11g/112010/win32_11gR2_client.zip 先将下载下来的ZIP文件解压,并运行se ...
- AFNetworking 2.0 来了
转:http://yangfei.me/blog/afnetworking-2-came/ 前几天 Mattt 发布了 AFNetworking 2.0,我的一个最大感慨就是,他怎么那么高产? 关于 ...
- MyBatis学习 之 三、动态SQL语句
目录(?)[-] 三动态SQL语句 selectKey 标签 if标签 if where 的条件判断 if set 的更新语句 if trim代替whereset标签 trim代替set choose ...
- System Services -> Memory Management -> About Memory Management
Virtual Address Space Memory Pools Memory Performance Information Virtual Memory Functions Heap Func ...
- innodb buffer pool
add page to flush list buffer pool中的page,有三种状态: l free: 当前page未被使用 l clean: 当前page被使用,对应于数 ...
- C# DataGridView的列对象属性探讨 (未完待续)
比较难的几个属性的释义[1]: