POJ1179Polygon(DP)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4456 | Accepted: 1856 |
Description

On the first move, one of the edges is removed. Subsequent moves involve the following steps:
�pick an edge E and the two vertices V1 and V2 that are linked by E; and
�replace them by a new vertex, labelled with the result of performing the operation indicated in E on the labels of V1 and V2.
The game ends when there are no more edges, and its score is the label of the single vertex remaining.
Consider the polygon of Figure 1. The player started by removing
edge 3. After that, the player picked edge 1, then edge 4, and, finally,
edge 2. The score is 0.
Write a program that, given a polygon, computes the highest possible
score and lists all the edges that, if removed on the first move, can
lead to a game with that score.
Input
program is to read from standard input. The input describes a polygon
with N vertices. It contains two lines. On the first line is the number
N. The second line contains the labels of edges 1, ..., N, interleaved
with the vertices' labels (first that of the vertex between edges 1 and
2, then that of the vertex between edges 2 and 3, and so on, until that
of the vertex between edges N and 1), all separated by one space. An
edge label is either the letter t (representing +) or the letter x
(representing *).
3 <= N <= 50
For any sequence of moves, vertex labels are in the range [-32768,32767].
Output
program is to write to standard output. On the first line your program
must write the highest score one can get for the input polygon. On the
second line it must write the list of all edges that, if removed on the
first move, can lead to a game with that score. Edges must be written in
increasing order, separated by one space.
Sample Input
4
t -7 t 4 x 2 x 5
Sample Output
33
1 2 题目的意思就是给n个数,n个两两数之间的运算符(只有+和*)问首先去掉哪个运算符号之后可以让其他的数按照一定的方法计算后结果最大。
其实结题思路还是比较好想到的,枚举(枚举去掉的符号)+DP(记忆化搜索)就可以做到。但这里有一个天坑,就是负负得正,所以不能单一的枚举最大值,而要同时DP最小值。
计算最大值:
加法 max(i,j) = max(i,k)+max(k,j);
乘法 max(i,j) = MAX(max(i,k)*max(k,j),max(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
计算最小值:
加法 min(i,j) = min(i,k)+min(k,j);
乘法 min(i,j) = MIN(max(i,k)*max(k,j),min(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
见代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <stack>
#include <set>
#include <queue>
#define MAX(a,b) (a) > (b)? (a):(b)
#define MIN(a,b) (a) < (b)? (a):(b)
#define mem(a) memset(a,0,sizeof(a))
#define INF 1000000007
#define MAXN 20005
using namespace std; bool op[];
int num[],dp_max[], dp_min[], n;
bool vis_max[],vis_min[];
int DP_MIN(int i,int j);
int DP_MAX(int i,int j); int DP_MAX(int i,int j)//DP求区间最大值
{
int u = i*+j;
if(vis_max[u])return dp_max[u];
vis_max[u]=;
if(j-i <= )
{
if(j==i)return dp_max[u]=num[i-];
if(!op[i])return dp_max[u]=num[i-]+num[i];
else return dp_max[u]=num[i-]*num[i];
}
dp_max[u] = -INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_max[u] = MAX(dp_max[u], ll+rr);
else dp_max[u] = MAX(dp_max[u], MAX(ll*rr,MAX(l*r,MAX(l*rr,r*ll))));
}
return dp_max[u];
} int DP_MIN(int i,int j)//DP求区间最小值
{
int u = i*+j;
if(vis_min[u])return dp_min[u];
vis_min[u]=;
if(j-i <= )
{
if(j==i)return dp_min[u]=num[i-];
if(!op[i])return dp_min[u]=num[i-]+num[i];
else return dp_min[u]=num[i-]*num[i];
}
dp_min[u] = INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_min[u] = MIN(dp_min[u], l+r);
else dp_min[u] = MIN(dp_min[u], MIN(ll*rr,MIN(l*r,MIN(l*rr,r*ll))));
}
return dp_min[u];
} int main()
{
while(~scanf("%d%*c",&n))
{
mem(op);mem(dp_max);
mem(num);mem(vis_min);
mem(vis_max);
int max=-INF,i;
char ch;
for(i=;i<n;i++)
{
scanf("%c %d%*c",&ch,&num[i]);
op[i]=op[i+n]=(ch=='x');
num[i+n]=num[i];
}
for(i=;i<n;i++)
{
max=MAX(max,DP_MAX(i+,i+n));
}
printf("%d\n",max);
int ok=;
for(i=;i<n;i++)
{
if(DP_MAX(i+,i+n) == max)
{
if(ok){printf("%d",i+);ok=;}
else printf(" %d",i+);
}
}
printf("\n");
}
return ;
}
POJ1179Polygon(DP)的更多相关文章
- POJ1179Polygon(区间dp)
啊~~ 被dp摁在地上摩擦的人 今天做了一道区间dp的题(POJ1179Polygon) 题目: Polygon Time Limit: 1000MS Memory Limit: 10000K T ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
随机推荐
- perl基本语法
标量 标量是 Perl 中最简单的数据类型.大多数的标量是数字(如 255 或 3.25e20)或者字符串(如 hello或者盖茨堡地址). 数字 perl中所有数字内部的格式都是双精度浮点数. 浮点 ...
- JasperReports+iReport打印为excel表头重复问题解决
iReport版本:3.7.4 解决方法很简单,无奈我就是纠结了一个多小时... 首先,点击文件根目录 移到 属性 框里面,找到Ignore pagination项,勾上,忽略分页,一切就OK了.
- autofac meta
http://kevincuzner.com/2014/05/19/extreme-attributed-metadata-autofac/ http://stackoverflow.com/ques ...
- UVa 10870 (矩阵快速幂) Recurrences
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio ...
- Asp.Net IEnumerable,ICollection,IList,List区别
做C#的同学们,都知道,一类只能有一个继承类,但可以实现多个接口.这句话就告诉我们:IEnumerable,ICollection,IList,List区别了 首先我看看 IEnumerable: / ...
- uva 11624 Fire!(搜索)
开始刷题啦= = 痛并快乐着,学到新东西的感觉其实比看那些无脑的小说.电视剧有意思多了 bfs裸体,关键是先把所有的着火点放入队列,分开一个一个做bfs会超时的 发现vis[][]是多余的,完全可以用 ...
- 物联网操作系统HelloX应用编程指南
HelloX操作系统应用编程指南 HelloX应用开发概述 可以通过三种方式,在HelloX操作系统基础上开发应用: 1. 以内部命令方式实现应用,直接编译链接到HelloX的内核she ...
- (转)TCP协议那些事
(上) TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面.所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人有很多收获.关于TCP这个协议的细节,我还是 ...
- vim简单使用教程
vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...
- POJ 2096-Collecting Bugs(概率dp入门)
题意: 有n种bug和s种系统bug,每天发现一种bug(可能已经发现过了)所有种bug被发现的概率相同,求所有bug被发现的期望天数. 分析: dp[i][j]发现i种bug,j种系统bug期望天数 ...