Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge
题目连接:
http://www.codeforces.com/contest/609/problem/E
Description
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
Input
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Output
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
Sample Input
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
Sample Output
9
8
11
8
8
8
9
Hint
题意
给你一个图,n点m边。对于每个边,问你包含这条边的最小生成树是多少。
题解:
先求最小生成树..查询在树上的边不影响结果,不在树上的边加入会产生环,那么求出这个环上权最大的边,删掉就是包含当前边的最小生成树.这个查询可以用倍增lca做
当然,直接上熟练剖分/LCT也是兹瓷的!
代码
#include<bits/stdc++.h>
using namespace std;
const int N=200500;
int n,m;
struct node
{
int x,y,c,no;
}E[N<<1];
int pre[N],to[N<<1],w[N<<1],nxt[N<<1];
int fa[N],lca[N][22],p[N][22],dep[N],cnt;
long long ans[N];
void makeedge(int x,int y,int c)
{
to[cnt]=x;w[cnt]=c;nxt[cnt]=pre[y];pre[y]=cnt++;
to[cnt]=y;w[cnt]=c;nxt[cnt]=pre[x];pre[x]=cnt++;
}
int getfather(int x)
{
if(fa[x]==x) return fa[x];else return fa[x]=getfather(fa[x]);
}
void dfs(int x)
{
for(int it=pre[x];~it;it=nxt[it])
{
int y=to[it],c=w[it];
if(y==lca[x][0]) continue;
dep[y]=dep[x]+1,lca[y][0]=x,p[y][0]=c;
dfs(y);
}
}
int query(int x,int y)
{
int ret=0;
if(dep[x]<dep[y]) swap(x,y);
for(int i=21;i>=0;i--)
if(dep[x]-(1<<i)>=dep[y])
ret=max(ret,p[x][i]),x=lca[x][i];
if(x==y) return ret;
for(int i=21;i>=0;i--)
if(lca[x][i]!=lca[y][i])
ret=max(ret,max(p[x][i],p[y][i])),x=lca[x][i],y=lca[y][i];
ret=max(ret,max(p[y][0],p[x][0]));
return ret;
}
bool cmp(node t1,node t2)
{
return t1.c<t2.c;
}
int main()
{
scanf("%d%d",&n,&m);
memset(pre,-1,sizeof(pre));
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&E[i].x,&E[i].y,&E[i].c);
E[i].no=i;
}
sort(E+1,E+m+1,cmp);
long long tot=0;
for(int i=1;i<=m;i++)
{
int x=E[i].x,y=E[i].y;
int f1=getfather(x),f2=getfather(y);
if(f1!=f2)
{
fa[f2]=f1;
tot+=(long long)E[i].c;
makeedge(x,y,E[i].c);
}
}
dfs(1);
for(int j=1;j<=21;j++)
for(int i=1;i<=n;i++)
if(lca[i][j-1])
{
lca[i][j]=lca[lca[i][j-1]][j-1];
p[i][j]=max(p[i][j-1],p[lca[i][j-1]][j-1]);
}
for(int i=1;i<=m;i++)
{
int x=E[i].x,y=E[i].y;
int tt=query(x,y);
ans[E[i].no]=max(0LL,(long long)E[i].c-(long long)tt)+tot;
}
for(int i=1;i<=m;i++)
printf("%I64d\n",ans[i]);
return 0;
}
Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值的更多相关文章
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种
题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...
- codeforces 609E. Minimum spanning tree for each edge 树链剖分
题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
随机推荐
- 锁之“轻量级锁”原理详解(Lightweight Locking)
大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意. 原因是,monitorenter与monitorexit这两个控制多线程同步的bytecode原语,是JVM依赖 ...
- 插件五之滚动条jquery.slimscroll.js
前言 slimscroll.js用于模拟传统的浏览器滚动条(竖向),原理为原内容内置于一个仅可视区域显示层,使用2个div层用于模拟滚动条和滚动条背景轨道监听滚动条div高度变化来控制内容层位置(猜测 ...
- nginx 负载均衡相关知识
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器. Nginx 是由 Igor Sysoev ...
- As3 常用日期工具
package com.lj.utils { import mx.controls.DateField; import mx.controls.dataGridClasses.DataGridColu ...
- Javascript兼容和CSS兼容总结
javascript部分 1. document.form.item 问题问题:代码中存在 document.formName.item(“itemName”) 这样的语句,不能在FF下运行解决方法: ...
- 认识Agile,Scrum和DevOps
If everything's under control you are going too slow. 当今的开发,要求faster and faster.所以我们要Agile,become Ag ...
- Java的平台无关性
转载自:http://www.cnblogs.com/Y/archive/2011/03/22/JavaVM_Learning_Chapter2_Platform_Independence.html ...
- Android教程说明-夜神模拟器连接IDE更新让Delphi发现你的手机或夜神模拟器
相关资料: [深圳]jiuk 发布 1.官网下载模拟器http://www.bignox.com/并运行 2.打开开发者选项刚开始是看不到的->关于平板电脑->多点几次版本号->打开 ...
- Socket小项目的一些心得(鸣谢传智的教学视频)
Socket是一种封装了四层通信的整体抽象入口,通常也称作"套接字",这是常用的四层通信这是访问Socket的流程图,这个分为客户端和服务器端,其中服务器端有以下步骤去建立,前面的 ...
- keycode按键对照表
功能场景,鼠标在某区域内,比如多个条件的搜索框内,按下enter键让其具有,点击 [确定/搜索]按钮的功能.在编辑的区域内,点击enter键,让其有 [保存]按钮的功能.则可这样:$("#s ...