The Factor 

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=628&pid=1001

Description

有一个数列,FancyCoder沉迷于研究这个数列的乘积相关问题,但是它们的乘积往往非常大。幸运的是,FancyCoder只需要找到这个巨大乘积的最小的满足如下规则的因子:这个因子包含大于两个因子(包括它本身;比如,4有3个因子,因此它是满足这个要求的一个数)。你需要找到这个数字并输出它。但是我们知道,对于某些数可能没有这样的因子;在这样的情况下,请输出-1.

Input

输入文件的第一行有一个正整数T \ (1 \le T \le 15)T (1≤T≤15),表示数据组数。

接下去有TT组数据,每组数据的第一行有一个正整数n \ (1 \le n \le 100)n (1≤n≤100).

第二行有nn个正整数a_1, \ldots, a_n \ (1 \le a_1, \ldots ,a_n \le 2\times 10^9)a​1​​,…,a​n​​ (1≤a​1​​,…,a​n​​≤2×10​9​​), 表示这个数列。

Output

输出TT行TT个数表示每次询问的答案。

Sample Input

2
3
1 2 3
5
6 6 6 6 6

Sample Output

6
4

HINT

 

题意

给你一个n个数

有一个数是由这N个数乘起来的,然后让你输出这个数的不是素数的最小的因子

题解:

对于每一个数都分解质因数,然后取最小的两个乘起来就好了

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 110
#define eps 1e-9
int Num;
//const int inf=0x7fffffff; //§&szlig;§é§à§é¨f§3
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//??????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解 ll Div[];
int tot=; void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
Div[tot++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
}
//&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ll p[maxn];
int main()
{
int t=read();
while(t--)
{
int n=read();
memset(Div,,sizeof(Div));
tot=;
for(int i=;i<=n;i++)
{
scanf("%I64d",&p[i]);
if(p[i]!=)
findfac(p[i]);
}
sort(Div,Div+tot);
if(tot<=1)
printf("-1\n");
else
{
cout<<Div[]*Div[]<<endl;
//printf("%I64d\n",Div[0]*Div[1]);
}
}
}

hdu 5428 The Factor 分解质因数的更多相关文章

  1. HDU 5428 The Factor 分解因式

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5428 The Factor  Accepts: 101  Submissions: 811  Tim ...

  2. HDU 5428 The Factor (素因数分解)

    题意:给出n个数,问这n个数的乘积中至少有三个因子的最小因子.若不存在这样的因子,则输出 -1: 思路:求出每个数的最小的两个素因数,然后输出其中最小的两个数的乘积. 代码: #include< ...

  3. hdu2574 Hdu Girls' Day (分解质因数)

    Hdu Girls' Day Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. HDU 5428 The Factor

    话说这题意真的是好难懂啊,尽管搜到了中文题意,然而还是没懂,最后看到了一个题解才懂的.http://www.cnblogs.com/Apro/p/4784808.html#3470972 题意:给出n ...

  5. hdu 5428 The Factor(数学)

    Problem Description There is a sequence of n positive integers. Fancycoder is addicted to learn thei ...

  6. HDU 5428 分解质因数

                                                                                                   The F ...

  7. light oj 1236 分解质因数

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...

  8. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  9. POJ1811(SummerTrainingDay04-G miller-rabin判断素性 && pollard-rho分解质因数)

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 35528   Accepted: 9479 Case ...

随机推荐

  1. 【html】页面制作规范文档

    每天都在写html/css/js代码,总结的一些页面制作的规范 文件命名规范 1) 文件目录.文件名称统一用小写的英文字母.数字.下划线组合,文件名要与表现的内容相近,不到万不得已不要以拼音作为名称, ...

  2. 微信开发之Ngrok环境准备(一)

    一.为什么要使用ngrok? 各位肯定都知道,做微信开发,我们的开发服务器需要和微信服务器做交互,SO,我们需要准备一台放置在公网的服务器,能够使得我们的服务器可以正常访问微信服务器,并且微信服务器也 ...

  3. android学习笔记五

    Android中的category大全 Api Level 3(SDK 1.5)和Api Level 4(SDK 1.6): android.intent.category.ALTERNATIVE a ...

  4. HDU 5883 The Best Path

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  5. java web 学习十五(jsp基础语法)

    任何语言都有自己的语法,JAVA中有,JSP虽然是在JAVA上的一种应用,但是依然有其自己扩充的语法,而且在JSP中,所有的JAVA语句都可以使用. 一.JSP模版元素 JSP页面中的HTML内容称之 ...

  6. 读《编写高质量代码-Web前端开发修炼之道》笔记

    第一章 1.Web标准由一系列标准组合而成,核心理念是将网页的结构,样式和行为分离,所以分为三大部分:结构标准,样式标准和行为标准.结构标准包括XML标准,XHTML标准,HTML标准:样式标准指CS ...

  7. Ubuntu_wifi&pppoe

    学校现在上网全部要拨号,加上我在宿舍用的是无线路由,也就是要在ubuntu下实现连接wifi后再拨号,这个功能在默认的ubuntu网络设置里面是没有的,里面有dsl但是对有线网络使用的,有点小郁闷.不 ...

  8. warning LNK4098: 默认库“LIBCMT”与其他库的使用冲突;请使用 /NODEFAULTLIB:library

    最近在编译库文件后,使用它做APP,遇到如下问题: 1>LIBCMT.lib(invarg.obj) : error LNK2005: __pInvalidArgHandler 已经在 LIBC ...

  9. Android JNI之JAVA与C++对象建立对称关联(JNI优化设计,确保JNI调用的稳定性)

    转载请声明:原文转自:http://www.cnblogs.com/xiezie/p/5930503.html Android JNI之JAVA与C++对象建立对称关联 1.JAVA对象持有C++对象 ...

  10. RabbitMQ三种Exchange模式(fanout,direct,topic)的特性 -摘自网络

    RabbitMQ中,所有生产者提交的消息都由Exchange来接受,然后Exchange按照特定的策略转发到Queue进行存储 RabbitMQ提供了四种Exchange:fanout,direct, ...