Guass列选主元消去法和三角分解法
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下:
1、Guass列选主元消去法对于AX =B
1)、消元过程:将(A|B)进行变换为,其中
是上三角矩阵。即:
k从1到n-1
a、 列选主元
选取第k列中绝对值最大元素作为主元。
b、 换行
c、 归一化
d、 消元
2)、回代过程:由解出。
2、三角分解法(Doolittle分解)
将A分解为如下形式
由矩阵乘法原理
a、计算U的第一行,再计算L的第一列
b、设已求出U的1至r-1行,L的1至r-1列。先计算U的第r行,再计算L的第r列。
a)计算U的r行
b)计算L的r列
C#代码:
代码说明:Guass列主消元法部分将计算出来的根仍然储存在增广矩阵的最后一列,而Doolittle分解,将分解后的结果也储存至原来的数组中,这样可以节约空间。。
using System;
using System.Windows.Forms; namespace Test
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
} private void Cannel_Button_Click(object sender, EventArgs e)
{
this.textBox1.Clear();
this.textBox2.Clear();
this.textBox3.Clear();
this.comboBox1.SelectedIndex = -1;
}
public double[,] GetNum(string str, int n)
{
string[] strnum = str.Split(' ');
double[,] a = new double[n, n + 1];
int k = 0;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < strnum.Length / n; j++)
{
a[i, j] = double.Parse((strnum[k]).ToString());
k++;
}
}
return a;
}
public void Gauss(double[,] a, int n)
{
int i, j;
SelectColE(a, n);
for (i = n - 1; i >= 0; i--)
{
for (j = i + 1; j < n; j++)
a[i, n] -= a[i, j] * a[j, n];
a[i, n] /= a[i, i];
}
}
//选择列主元并进行消元
public void SelectColE(double[,] a, int n)
{
int i, j, k, maxRowE;
double temp; //用于记录消元时的因数
for (j = 0; j < n; j++)
{
maxRowE = j;
for (i = j; i < n; i++)
if (System.Math.Abs(a[i, j]) > System.Math.Abs(a[maxRowE, j]))
maxRowE = i;
if (maxRowE != j)
swapRow(a, j, maxRowE, n); //与最大主元所在行交换
//消元
for (i = j + 1; i < n; i++)
{
temp = a[i, j] / a[j, j];
for (k = j; k < n + 1; k++)
a[i, k] -= a[j, k] * temp;
}
}
return;
}
public void swapRow(double[,] a, int m, int maxRowE, int n)
{
int k;
double temp;
for (k = m; k < n + 1; k++)
{
temp = a[m, k];
a[m, k] = a[maxRowE, k];
a[maxRowE, k] = temp;
}
}
public void Doolittle(double[,] a, int n)
{
for (int i = 0; i < n; i++)
{
if (i == 0)
{
for (int j = i + 1; j < n; j++)
a[j, 0] = a[j, 0] / a[0, 0];
}
else
{
double temp = 0, s = 0;
for (int j = i; j < n; j++)
{
for (int k = 0; k < i; k++)
{
temp = temp + a[i, k] * a[k, j];
}
a[i, j] = a[i, j] - temp;
}
for (int j = i + 1; j < n; j++)
{
for (int k = 0; k < i; k++)
{
s = s + a[j, k] * a[k, i];
}
a[j, i] = (a[j, i] - s) / a[i, i];
}
}
}
}
private void Exit_Button_Click(object sender, EventArgs e)
{
this.Close();
} private void Confirm_Button_Click(object sender, EventArgs e)
{
if (this.textBox2.Text.Trim().ToString().Length == 0)
{
this.textBox2.Text = this.textBox1.Text.Trim();
}
else
{
this.textBox2.Text = this.textBox2.Text + "\r\n" + this.textBox1.Text.Trim();
}
this.textBox1.Clear();
} private void Calculate_Button_Click(object sender, EventArgs e)
{
string str = this.textBox2.Text.Trim().ToString();
string myString = str.Replace("\n", " ").Replace("\r", string.Empty);
double[,] a = new double[this.textBox2.Lines.GetUpperBound(0) + 1, this.textBox2.Lines.GetUpperBound(0) + 2];
a = GetNum(myString, this.textBox2.Lines.GetUpperBound(0) + 1);
if (this.comboBox1.Text == "Guass列主消元法")
{
Gauss(a, this.textBox2.Lines.GetUpperBound(0) + 1);
for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++)
{
this.textBox3.Text = this.textBox3.Text + "\r\nX" + (i + 1) + "=" + a[i, this.textBox2.Lines.GetUpperBound(0) + 1];
}
}
else if (this.comboBox1.Text == "Doolittle三角分解法")
{
this.textBox3.Enabled = true;
Doolittle(a, this.textBox2.Lines.GetUpperBound(0) + 1);
this.label3.Text = "分解后的结果:";
this.textBox3.Clear();
this.textBox3.Text += "L矩阵:\r\n";
for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++)
{
for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++)
{
if (j < i)
{
this.textBox3.Text += a[i, j].ToString() + "\t";
}
else if (i == j)
{
this.textBox3.Text += "1\t";
}
else
{
this.textBox3.Text += "0\t";
}
}
this.textBox3.Text += "\r\n";
}
this.textBox3.Text += "\r\nU矩阵:\r\n";
for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++)
{
for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++)
{
if (j >= i)
{
this.textBox3.Text += a[i, j].ToString() + "\t";
}
else
{
this.textBox3.Text += "0\t";
}
}
this.textBox3.Text += "\r\n";
}
} } private void textBox1_KeyDown(object sender, KeyEventArgs e)
{
if (e.KeyCode == Keys.Enter)
{
if (this.textBox1.Text.Trim().ToString().Length == 0)
{
Calculate_Button_Click(sender, e);
}
else
{
Confirm_Button_Click(sender, e);
}
}
}
private void button1_Click(object sender, EventArgs e)
{
this.textBox2.Enabled = true;
}
}
}
运行截图:
至此完毕。。。。
Guass列选主元消去法和三角分解法的更多相关文章
- 大规模问题的分解法-D-W分解法
大规模线性规划问题的求解极具挑战性,在效率.存储和数值稳定性等方面对算法都有很高的要求.但是这类问题常常非常稀疏且有特殊结构,能够分解为若干个较小规模问题求解. 线性规划问题的目标函数和非负约束都可分 ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- [Architecture] 系统架构正交分解法
[Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...
- 时间序列分解-STL分解法
时间序列分解-STL分解法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. STL(’Seasonal a ...
- 项目管理——WBS工作分解法
首先我们要了解什么是WBS工作分解法 工作分解结构(Work Breakdown Structure,简称WBS)跟因数分解是一个原理,就是把一个项目,按一定的原则分解,项目分解成任务,任务再分解成一 ...
- Miiler-Robin素数测试与Pollard-Rho大数分解法
板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素 ...
- [原创]浅谈对任务分解法WBS应用
[原创]浅谈对任务分解法WBS应用 1.WBS是什么? 即Work Breakdown Structure如何进行WBS分解:目标→任务→工作→活动 2.WBS分解的原则:将主体目标逐步细化分解,最底 ...
- Pollard_Rho 整数分解法【学习笔记】
引文:如果要对比较大的整数分解,显然之前所学的筛选法和是试除法都将不再适用.所以我们需要学习速度更快的Pollard_Rho算法. 算法原理: 生成两个整数a和b,计算p=gcd(a-b, n),知道 ...
- url映射 ccf (Java正则表达式80分解法)
问题描述 试题编号: 201803-3 试题名称: URL映射 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 URL 映射是诸如 Django.Ruby on Rails 等 ...
随机推荐
- HTML5 input元素新的特性
在HTML5中,<input>元素增加了许多新的属性.方法及控件.本文章分别对这三方面进行介绍. 目录 1. 属性 2. 方法 3. 新控件 1. 属性 <input>元素在H ...
- InstallShield 脚本语言学习笔记
InstallShield脚本语言是类似C语言,利用InstallShield的向导或模板都可以生成基本的脚本程序框架,可以在此基础上按自己的意愿进行修改和添加. 一.基本语法规则 ...
- spring源码分析之<context:property-placeholder/>和<property-override/>
在一个spring xml配置文件中,NamespaceHandler是DefaultBeanDefinitionDocumentReader用来处理自定义命名空间的基础接口.其层次结构如下: < ...
- 原生javascript 固定表头原理与源码
我在工作中需要固定表头这个功能,我不想去找,没意思.于是就写了一个,我写的是angularjs 自定义指令 起了个 "fix-header" ,有人叫 "freeze- ...
- 当web.config文件放置在共享目录下(UNC),启动IIS会提示有错误信息500.19,伴随有错误代码0x80070003和错误代码0x80070005的解决办法
最近遇到一个很有意思的使用环境,操作人员将所有的网站应用内容投放到共享存储里面,并且使用微软的SMB协议将其以CIFS的方式共享出来,使用Windows Server 2008 R2的IIS将其连接起 ...
- 【踩坑速记】开源日历控件,顺便全面解析开源库打包发布到Bintray/Jcenter全过程(新),让开源更简单~
一.写在前面 自使用android studio开始,就被它独特的依赖方式:compile 'com.android.support:appcompat-v7:25.0.1'所深深吸引,自从有了它,麻 ...
- C#项目中文件的具体含义
1.Bin 目录 用来存放编译的结果,bin是二进制binary的英文缩写,因为最初C编译的程序文件都是二进制文件,它有Debug和Release两个版本,分别对应的文件夹为bin/Debug和bin ...
- IT运维监控解决方案介绍
现状 •小公司/ 创业团队< 500台服务器规模 开源方案:Zabbix.Nagios.Cacti- 云服务提供商:监控宝.oneAlert等 •BAT级别> 10万台服务器 投 ...
- Android 解析XML文件和生成XML文件
解析XML文件 public static void initXML(Context context) { //can't create in /data/media/0 because permis ...
- 海鑫智圣:物联网漫谈之MQTT协议
什么是MQTT协议 MQTT(消息队列遥测传输协议)是IBM在1999年专门针对物联网等应用场景来制订的轻量级双向消息传输协议,它主要是为了解决物联网上使用到的设备的互相通信的问题,以及这些设备与后端 ...