第四讲 机器学习的可行性

一、Hoeffding's Inequality

\(P[\left | \nu -\mu  \right |>\epsilon ] \leq 2exp(-2\epsilon^{2}N)\)              (1)

in-sample error, 也就是在样本里出现的error,\(E_{in}\) is probably close to out-of-sample error \(E_{out}\) (within \(\epsilon\))

推出一个类似的公式: \(P[\left | E_{in} - E_{out}  \right |>\epsilon ] \leq 2exp(-2\epsilon^{2}N)\)    (2)

也就是说,公式(2)说明了问题可以学习的两个条件:

(1)\( E_{in} \approx E_{out}\) :这个代表 \( E_{out}\) 要和 \( E_{in}\)差不多大

(2)\( E_{in}(h) \approx 0\) :这个代表\( E_{in}\)要差不多是0

这就推出,\( h \approx f\)  with respect to \(P\)

我们的学习思路就是,从一些hypothesis set 中找到最好的 \(h\),使得\( h \approx f\)

二、真实的学习

面对多个\( h \) 时,容易出现问题。

BAD Sample:\( E_{in} and E_{out} \) far away

那么,Bad Sample的概率有多大呢?我们认为,在众多的hypothesis set上的每一个\(h_{i}\),只要有一个是坏的,则都是坏的

\(P_{\mathfrak{D}}\left [ BAD   \mathfrak{D} \right ]  \)

\( = P_{\mathfrak{D}}\left [ BAD  \mathfrak{D}  for   h_{1} or  BAD   \mathfrak{D}  for  h_{2}  or ...  or  BAD  \mathfrak{D}  for  h_{M} \right ] \)

\( \leq P_{D} \left [ BAD  D for  h_{1} \right ] + P_{D} \left [ BAD  D for h_{2} \right] + ... +  P_{D} \left [ BAD  D for h_{M} \right] \)

(\( Union Bound \))

\( \leq 2exp(-2\epsilon^2N) + 2exp(-2\epsilon^2N) + ... + 2exp(-2\epsilon^2N) \)

\( = 2M\cdot exp(-2\epsilon^2N)\)

当hypothesis set为有限时,(\( M\) 固定),当\(N\)足够大时,因为后面的\(exp(-2\epsilon^2N)\) 随着\(N\)增大会变得特别小,故总体值是很小的。

此时学习是有效的。

当hypothesis set 为无穷大时,\( M = \infty \)  则有问题了,具体问题下一部分讨论。

机器学习基石的泛化理论及VC维部分整理的更多相关文章

  1. 机器学习基石的泛化理论及VC维部分整理(第六讲)

    第六讲 第五讲主要讲了机器学习可能性,两个问题,(1)\(E_{in} 要和 E_{out}\) 有很接近,(2)\(E_{in}\)要足够小. 对于第一个假设,根据Hoefding's Inequa ...

  2. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

  3. 机器学习基石笔记:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  4. 【机器学习基石笔记】七、vc Dimension

    vc demension定义: breakPoint - 1 N > vc dimension, 任意的N个,就不能任意划分 N <= vc dimension,存在N个,可以任意划分 只 ...

  5. 《机器学习基石》---VC维

    1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...

  6. 机器学习基石7-The VC Dimension

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...

  7. 机器学习基石:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  8. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  9. 机器学习基石12-Nonlinear Transformation

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...

随机推荐

  1. 【概率dp,难度3颗星】hdu-5001(2014鞍山网络赛)

    给你一个连通的无向图,等概率随机选取一个起点,走d步,每一步等概率走到相邻的点.问走完d步之后,每个点没有被经过的概率. 推状态的关键当然就是对这个“从任意起点走完d步点node没被经过的概率”的理解 ...

  2. 转: Lua 语言 15 分钟快速入门

    看点: 1. 以很特殊的方式工,把Lua的语法全部输出一段,很容易让人记住..不错 转: http://blog.jobbole.com/70480/

  3. HDOJ2019数列有序!

    数列有序! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  4. Java -- Thread中start和run方法的区别

    一.认识Thread的 start() 和 run() 1.start(): 我们先来看看API中对于该方法的介绍: 使该线程开始执行:Java 虚拟机调用该线程的 run 方法. 结果是两个线程并发 ...

  5. IIS6批量转移网站

    IIS6.0有个导出配置的功能,但你却找不到界面上的直接导入配置功能,需要用到操作系统自带的iiscnfg.vbs脚本. 1.导出当前的IIS网站配置 打开Internet信息服务(IIS)---&g ...

  6. 动态加载JS代码

    到处查资料研究js动态脚本的加载,找到以下7种方法,总有一种适合你! 首先我们需要一个被加载的js文件,我在一个固定文件夹下创建了一个package.js,打开后在里面写一个方法functionOne ...

  7. Android EditText不弹出输入法焦点问题的总结

    转自:http://mobile.51cto.com/aprogram-403138.htm 看一个manifest中Activity的配置,如果这个页面有EditText,并且我们想要进入这个页面的 ...

  8. 客户端javascript笔记

    html 中的 onclick访问的是全局作用域

  9. 你需要知道的三个CSS技巧

    各种浏览器之间的竞争的白热化意味着越来越多的人现在开始使用那些支持最新.最先进的W3C Web标准的设备,以一种更具交互性的方式来访问互联网.这意味着我们终于能够利用更强大更灵活的CSS来创造更简洁, ...

  10. ArcSDE for oracle10g安装后post的时候出现错误

    The Post Installation Setup can not locate required Oracle files in your path.Check your Oracle inst ...