第四讲 机器学习的可行性

一、Hoeffding's Inequality

\(P[\left | \nu -\mu  \right |>\epsilon ] \leq 2exp(-2\epsilon^{2}N)\)              (1)

in-sample error, 也就是在样本里出现的error,\(E_{in}\) is probably close to out-of-sample error \(E_{out}\) (within \(\epsilon\))

推出一个类似的公式: \(P[\left | E_{in} - E_{out}  \right |>\epsilon ] \leq 2exp(-2\epsilon^{2}N)\)    (2)

也就是说,公式(2)说明了问题可以学习的两个条件:

(1)\( E_{in} \approx E_{out}\) :这个代表 \( E_{out}\) 要和 \( E_{in}\)差不多大

(2)\( E_{in}(h) \approx 0\) :这个代表\( E_{in}\)要差不多是0

这就推出,\( h \approx f\)  with respect to \(P\)

我们的学习思路就是,从一些hypothesis set 中找到最好的 \(h\),使得\( h \approx f\)

二、真实的学习

面对多个\( h \) 时,容易出现问题。

BAD Sample:\( E_{in} and E_{out} \) far away

那么,Bad Sample的概率有多大呢?我们认为,在众多的hypothesis set上的每一个\(h_{i}\),只要有一个是坏的,则都是坏的

\(P_{\mathfrak{D}}\left [ BAD   \mathfrak{D} \right ]  \)

\( = P_{\mathfrak{D}}\left [ BAD  \mathfrak{D}  for   h_{1} or  BAD   \mathfrak{D}  for  h_{2}  or ...  or  BAD  \mathfrak{D}  for  h_{M} \right ] \)

\( \leq P_{D} \left [ BAD  D for  h_{1} \right ] + P_{D} \left [ BAD  D for h_{2} \right] + ... +  P_{D} \left [ BAD  D for h_{M} \right] \)

(\( Union Bound \))

\( \leq 2exp(-2\epsilon^2N) + 2exp(-2\epsilon^2N) + ... + 2exp(-2\epsilon^2N) \)

\( = 2M\cdot exp(-2\epsilon^2N)\)

当hypothesis set为有限时,(\( M\) 固定),当\(N\)足够大时,因为后面的\(exp(-2\epsilon^2N)\) 随着\(N\)增大会变得特别小,故总体值是很小的。

此时学习是有效的。

当hypothesis set 为无穷大时,\( M = \infty \)  则有问题了,具体问题下一部分讨论。

机器学习基石的泛化理论及VC维部分整理的更多相关文章

  1. 机器学习基石的泛化理论及VC维部分整理(第六讲)

    第六讲 第五讲主要讲了机器学习可能性,两个问题,(1)\(E_{in} 要和 E_{out}\) 有很接近,(2)\(E_{in}\)要足够小. 对于第一个假设,根据Hoefding's Inequa ...

  2. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

  3. 机器学习基石笔记:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  4. 【机器学习基石笔记】七、vc Dimension

    vc demension定义: breakPoint - 1 N > vc dimension, 任意的N个,就不能任意划分 N <= vc dimension,存在N个,可以任意划分 只 ...

  5. 《机器学习基石》---VC维

    1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...

  6. 机器学习基石7-The VC Dimension

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...

  7. 机器学习基石:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  8. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  9. 机器学习基石12-Nonlinear Transformation

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...

随机推荐

  1. linux下svn命令常用操作

    1.将文件checkout到本地目录 svn checkout path(path是服务器上的目录) 例如:svn checkout svn://192.168.1.1/pro/domain 简写:s ...

  2. <转>cookie和缓存解析

    原文来自:http://www.cnblogs.com/cuihongyu3503319/archive/2008/04/18/1160083.html 缓存cache 为了提高访问网页的速度,浏览器 ...

  3. Redis 命令 - Server

    BGREWRITEAOF Asynchronously rewrite the append-only file BGSAVE Asynchronously save the dataset to d ...

  4. Networking - ARP 协议

    ARP 协议概述 ARP(Address Resolution Protocol),即地址解析协议,用于把 IP 地址映射到物理地址.网段上的每台主机都维护着一个被称为 ARP Table 或 ARP ...

  5. HTTP - 持久连接

    Web 客户端经常会打开到同一个站点的连接.比如,一个 Web 页面上的大部分内嵌图片通常都是来自同一个 Web 站点,而且相当一部分指向其他对象的超链接通常都指向同一个站点.因此,初始化了对某服务器 ...

  6. Nginx - Rewrite Module

    Initially, the purpose of this module (as the name suggests) is to perform URL rewriting. This mecha ...

  7. Git - Eclipse 提交工程至 GitHub

    1. 在 GitHub 新建一个工程 hello-world,repository 地址是 https://github.com/username/hello-world.git 2. 在 Eclip ...

  8. 【转载】Apache kafka原理与特性(0.8V)

    http://blog.csdn.net/xiaolang85/article/details/37821209 前言: kafka是一个轻量级的/分布式的/具备replication能力的日志采集组 ...

  9. 随笔之Android平台上的进程调度探讨

    http://blog.csdn.net/innost/article/details/6940136 随笔之Android平台上的进程调度探讨 一由来 最近在翻阅MediaProvider的时候,突 ...

  10. 标准库string类型简述

    若想使用标准库的string类需要使用如下声明: #include <string> Using std::string: Using std::wstring: 那么就可以使用这两个类了 ...