Project Euler 88:Product-sum numbers 积和数
A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, … , ak} is called a product-sum number: N = a1 + a2 + … + ak = a1 × a2 × … × ak.
For example, 6 = 1 + 2 + 3 = 1 × 2 × 3.
For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, k = 2, 3, 4, 5, and 6 are as follows.
k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6
Hence for 2≤k≤6, the sum of all the minimal product-sum numbers is 4+6+8+12 = 30; note that 8 is only counted once in the sum.
In fact, as the complete set of minimal product-sum numbers for 2≤k≤12 is {4, 6, 8, 12, 15, 16}, the sum is 61.
What is the sum of all the minimal product-sum numbers for 2≤k≤12000?
若自然数N能够同时表示成一组至少两个自然数{a1, a2, … , ak}的积和和,也即N = a1 + a2 + … + ak = a1 × a2 × … × ak,则N被称为积和数。
例如,6是积和数,因为6 = 1 + 2 + 3 = 1 × 2 × 3。
给定集合的规模k,我们称满足上述性质的最小N值为最小积和数。当k = 2、3、4、5、6时,最小积和数如下所示:
k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6
因此,对于2≤k≤6,所有的最小积和数的和为4+6+8+12 = 30;注意8只被计算了一次。
已知对于2≤k≤12,所有最小积和数构成的集合是{4, 6, 8, 12, 15, 16},这些数的和是61。
对于2≤k≤12000,所有最小积和数的和是多少?
解题
k个数的和 == k个数的积
求对应k时候最小的这个数
题目要求2≤k≤12000,时候的最小积数和的和
参考题解中的程序,详解程序注释
Java
package Level3; import java.util.Set;
import java.util.TreeSet; public class PE088{
static void run(){
int Kmin = 2;
int Kmax = 12000;
int sum = 0;
Set<Integer> set = new TreeSet<Integer>();
for(int k=Kmin;k<=Kmax;k++){
int minN = getMin(k);
if(set.add(minN))
sum+=minN;
}
System.out.println(sum);
}
// 找出k对于最小的n
static int getMin(int k){
for(int n=k+1;;n++){
if(check(n,n,k))
return n;
}
}
// 一个数拆成成k个数的和或者k个数的积
// prod 乘
// sum 和
// 开始的时候这两个数是相等的 都是 prod 或者sum 拆分成k份 // 这里用到的是递归的方法,当 prod2 = prod1 * a ;sum2 = sum1- a
// 下面就可以检测下一轮了 check(prod2,sum2,k-1)
// 这里用递归也是因为可能出 8 = 2*2*2*1*1 = 2+2+2+1+1 的形式,乘子中有数相同 的情况
// 结束情况: 乘子是1的时候 sum == k k个1的和就是sum了
// k=1的时候 说明结束了 return prod == sum
// 下次递归可进行需要:d<= prod k-1<= sum-d 下面程序很显然的
static boolean check(int prod,int sum,int k){
if(sum <k) return false;
if(prod == 1) return sum==k;
if(k==1) return prod ==sum;
for(int d =2;d<= prod && sum-d>=k-1;d++){
if(prod%d==0){
if(check(prod/d,sum-d,k-1))
return true;
}
}
return false;
}
// 7587457
// running time=1s577ms
public static void main(String[] args){
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}
n[k]表示minimal product-sum numbers for size=k
n[k]的上界为2*k,因为2*k总是能分解成2*k,然后2*k=k+2+(1)*(k-2)
显然n[k]的下界为k
对于一个数num 因式分解后因子个数为product 这些因子的和为sump
则需要添加的1的个数为num-sump,所以size k=num-sump+product
===============================================
上面说的很好理解
在对于因式分解中
n[k] 是 一个数分解成k个数的和 、k个数的积的最小值
我上面链接中的程序的理解是通过因式分解,不断的缩小n[k]处的值,最终的值就是最小的,但是程序后面的递归理解不透。。。
# coding=gbk import time as time
def run2():
kMax = 12000
n = [2*kMax for i in range(kMax)] def getpsn(num,sump,product,start):
k = num - sump + product
if k < kMax:
if num<n[k]:
n[k] = num
for i in range(start,kMax//num *2):
getpsn(num*i,sump+i,product + 1,i)
getpsn(1,1,1,2)
ans = sum(set(n[2:]))
print ans
#
# running time= 0.266000032425 s
def run():
kMin = 2
kMax = 12000
res=[]
for k in range(kMin,kMax+1):
minN = getMinN(k)
if minN not in res:
res.append(minN)
print sum(minN) def getMinN(k):
n = k + 1
while(True):
if check(n,n,k):
return n
n +=1 def check(prod,sum,k):
if sum<k : return False
if prod == 1:return sum==k
if k==1 :return prod ==sum
for d in range(2,prod):
if sum-d>=k-1 and prod%d ==0:
if check(prod/d,sum-d,k-1):
return True
return False t0 = time.time()
run2()
t1 = time.time()
print "running time=",(t1-t0),"s"
Project Euler 88:Product-sum numbers 积和数的更多相关文章
- Project Euler 42 Coded triangle numbers
题意:三角形数序列的第n项由公式tn = 1/2n(n+1)给出:因此前十个三角形数是: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, - 将一个单词的每个字母分别转化为其 ...
- Project Euler 2 Even Fibonacci numbers
题意:斐波那契数列中的每一项都是前两项的和.由1和2开始生成的斐波那契数列前10项为:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, -考虑该斐波那契数列中不超过四百万的项,求其 ...
- Project Euler 345: Matrix Sum
题目 思路: 将问题转化成最小费用流 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #incl ...
- Project Euler 13 Large sum
题意:计算出以下一百个50位数的和的前十位数字. /************************************************************************* ...
- Python练习题 048:Project Euler 021:10000以内所有亲和数之和
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...
- Python练习题 034:Project Euler 006:和平方与平方和之差
本题来自 Project Euler 第6题:https://projecteuler.net/problem=6 # Project Euler: Problem 6: Sum square dif ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
- Python练习题 032:Project Euler 004:最大的回文积
本题来自 Project Euler 第4题:https://projecteuler.net/problem=4 # Project Euler: Problem 4: Largest palind ...
- 【Project Euler 8】Largest product in a series
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...
随机推荐
- jquery 从页面获取li数组,删除不在数组中的key
应用场景: 获取页面 li 下面 key的值,添加到 arr数组 删除车型不在arr 数组中的value值. 示例代码: var getSaleModels = function(brand_id){ ...
- python学习第二天第二部分
一.变量:用来记录状态 变量值得变化即状态的变化,程序运行的本质就是来处理一系列状态的变化 python中所有数据都是对象 对象的三个特性: 身份(内存地址):用id()获取 类型:决定了该对象可以保 ...
- 每日一“酷”之pprint
pprint – 美观打印 作用:美观打印数据结构 pprint 包含一个“美观打印机”,用于生成数据结构的一个美观视图.格式化工具会生成数据结构的一些表示,不仅可以由解释器正确地解析,而且便于人类阅 ...
- with check option(视图 )
建立视图的时候使用WITH CHECK OPTION 与不使用的区别 WITH CHECK OPTION insert update delete 使用with check option 保证ins ...
- SQL Server中如何用mdf,ldf文件还原数据库
不论是手动还原还是写个脚本还原,首先都要修改文件的属性为可读写,另外这个用户能够修改 1.手动Attach 2.写个脚本还原 我个人比较喜欢写个脚本去还原 Exec sp_attach_db @dbn ...
- c++中new分配动态数组
变长一维数组 这里说的变长数组是指在编译时不能确定数组长度,程序在运行时需要动态分配内存空间的数组.实现变长数组最简单的是变长一维数组,你可以这样做: //文件名: array01.cpp ...
- 【rest】 深入理解rest
起因是想搞明白 ajax.rest风格和http请求数据会有什么区别 再来回顾一下概念: REST即表述性 状态 传递 满足这些约束条件和原则的应用程序或设计就是RESTful.需要注意的是,REST ...
- iOS开发中常用第三方库的使用和配置-GDataXML
这篇文章旨在给自己以后需要时能及时的查到,省得每次都去baidu. 1. xml解析库-GDataXML 参考文章:http://blog.csdn.net/tangren03/article/det ...
- per-project basis
Of course, HSQLDB connection parameters should be stored on a per-project basis, instead of only onc ...
- php的public、protected、private三种访问控制模式的区别
public: 公有类型 在子类中可以通过self::var调用public方法或属性,parent::method调用父类方法 在实例中可以能过$obj->var 来调用 public类型的方 ...