Product-sum numbers

A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, … , ak} is called a product-sum number: N = a1 + a2 + … + ak = a1 × a2 × … × ak.

For example, 6 = 1 + 2 + 3 = 1 × 2 × 3.

For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, k = 2, 3, 4, 5, and 6 are as follows.

k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6

Hence for 2≤k≤6, the sum of all the minimal product-sum numbers is 4+6+8+12 = 30; note that 8 is only counted once in the sum.

In fact, as the complete set of minimal product-sum numbers for 2≤k≤12 is {4, 6, 8, 12, 15, 16}, the sum is 61.

What is the sum of all the minimal product-sum numbers for 2≤k≤12000?


积和数

若自然数N能够同时表示成一组至少两个自然数{a1, a2, … , ak}的积和和,也即N = a1 + a2 + … + ak = a1 × a2 × … × ak,则N被称为积和数。

例如,6是积和数,因为6 = 1 + 2 + 3 = 1 × 2 × 3。

给定集合的规模k,我们称满足上述性质的最小N值为最小积和数。当k = 2、3、4、5、6时,最小积和数如下所示:

k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6

因此,对于2≤k≤6,所有的最小积和数的和为4+6+8+12 = 30;注意8只被计算了一次。

已知对于2≤k≤12,所有最小积和数构成的集合是{4, 6, 8, 12, 15, 16},这些数的和是61。

对于2≤k≤12000,所有最小积和数的和是多少?

解题

k个数的和 == k个数的积

求对应k时候最小的这个数

题目要求2≤k≤12000,时候的最小积数和的和

参考题解中的程序,详解程序注释

Java

package Level3;

import java.util.Set;
import java.util.TreeSet; public class PE088{
static void run(){
int Kmin = 2;
int Kmax = 12000;
int sum = 0;
Set<Integer> set = new TreeSet<Integer>();
for(int k=Kmin;k<=Kmax;k++){
int minN = getMin(k);
if(set.add(minN))
sum+=minN;
}
System.out.println(sum);
}
// 找出k对于最小的n
static int getMin(int k){
for(int n=k+1;;n++){
if(check(n,n,k))
return n;
}
}
// 一个数拆成成k个数的和或者k个数的积
// prod 乘
// sum 和
// 开始的时候这两个数是相等的 都是 prod 或者sum 拆分成k份 // 这里用到的是递归的方法,当 prod2 = prod1 * a ;sum2 = sum1- a
// 下面就可以检测下一轮了 check(prod2,sum2,k-1)
// 这里用递归也是因为可能出 8 = 2*2*2*1*1 = 2+2+2+1+1 的形式,乘子中有数相同 的情况
// 结束情况: 乘子是1的时候 sum == k k个1的和就是sum了
// k=1的时候 说明结束了 return prod == sum
// 下次递归可进行需要:d<= prod k-1<= sum-d 下面程序很显然的
static boolean check(int prod,int sum,int k){
if(sum <k) return false;
if(prod == 1) return sum==k;
if(k==1) return prod ==sum;
for(int d =2;d<= prod && sum-d>=k-1;d++){
if(prod%d==0){
if(check(prod/d,sum-d,k-1))
return true;
}
}
return false;
}
// 7587457
// running time=1s577ms
public static void main(String[] args){
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}

参考链接

n[k]表示minimal product-sum numbers for size=k

n[k]的上界为2*k,因为2*k总是能分解成2*k,然后2*k=k+2+(1)*(k-2)

显然n[k]的下界为k

对于一个数num   因式分解后因子个数为product   这些因子的和为sump

则需要添加的1的个数为num-sump,所以size k=num-sump+product

===============================================

上面说的很好理解

在对于因式分解中

n[k] 是 一个数分解成k个数的和  、k个数的积的最小值

我上面链接中的程序的理解是通过因式分解,不断的缩小n[k]处的值,最终的值就是最小的,但是程序后面的递归理解不透。。。

# coding=gbk

import time as time
def run2():
kMax = 12000
n = [2*kMax for i in range(kMax)] def getpsn(num,sump,product,start):
k = num - sump + product
if k < kMax:
if num<n[k]:
n[k] = num
for i in range(start,kMax//num *2):
getpsn(num*i,sump+i,product + 1,i)
getpsn(1,1,1,2)
ans = sum(set(n[2:]))
print ans
#
# running time= 0.266000032425 s
def run():
kMin = 2
kMax = 12000
res=[]
for k in range(kMin,kMax+1):
minN = getMinN(k)
if minN not in res:
res.append(minN)
print sum(minN) def getMinN(k):
n = k + 1
while(True):
if check(n,n,k):
return n
n +=1 def check(prod,sum,k):
if sum<k : return False
if prod == 1:return sum==k
if k==1 :return prod ==sum
for d in range(2,prod):
if sum-d>=k-1 and prod%d ==0:
if check(prod/d,sum-d,k-1):
return True
return False t0 = time.time()
run2()
t1 = time.time()
print "running time=",(t1-t0),"s"

Project Euler 88:Product-sum numbers 积和数的更多相关文章

  1. Project Euler 42 Coded triangle numbers

    题意:三角形数序列的第n项由公式tn = 1/2n(n+1)给出:因此前十个三角形数是: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, - 将一个单词的每个字母分别转化为其 ...

  2. Project Euler 2 Even Fibonacci numbers

    题意:斐波那契数列中的每一项都是前两项的和.由1和2开始生成的斐波那契数列前10项为:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, -考虑该斐波那契数列中不超过四百万的项,求其 ...

  3. Project Euler 345: Matrix Sum

    题目 思路: 将问题转化成最小费用流 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #incl ...

  4. Project Euler 13 Large sum

    题意:计算出以下一百个50位数的和的前十位数字. /************************************************************************* ...

  5. Python练习题 048:Project Euler 021:10000以内所有亲和数之和

    本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...

  6. Python练习题 034:Project Euler 006:和平方与平方和之差

    本题来自 Project Euler 第6题:https://projecteuler.net/problem=6 # Project Euler: Problem 6: Sum square dif ...

  7. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  8. Python练习题 032:Project Euler 004:最大的回文积

    本题来自 Project Euler 第4题:https://projecteuler.net/problem=4 # Project Euler: Problem 4: Largest palind ...

  9. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

随机推荐

  1. ubuntu下安装phpstudy环境记录

    下载一键安装包 下载地址:http://www.phpstudy.net/a.php/208.html 安装过程 开启终端 更改文件权限 chmod +x phpstudy 进行安装 ./phpstu ...

  2. php实现input输入框失去焦点自动保存输入框的数据

    最近做一个输入框失去焦点时自动保存数据的功能,当然就是jQuery选择器选择input,blur时,ajax提交数据给php文件,php文件保存一下数据咯.主要是要注意一下中文的问题,所以中间需要转一 ...

  3. Win7构造wifi热点【Written By KillerLegend】

    1:Win+R打开DOS,输入以下命令然后回车,不要关闭该DOS窗口: netsh wlan set hostednetwork  mode = allow ssid =你的wifi热点名字  key ...

  4. 交换a和b

    有点儿类似脑筋急转弯.做个标记先. 网上还看到比较奇特的,一句代码就OK的: 注:要都是int类型才行. 还有比较奇特的: 还有一个:

  5. Windows Server 2008 HPC 版本介绍以及的Pack

    最近接触了下 这个比较少见的 Windows Server版本 Windows Server 2008 HPC 微软官方的介绍 http://www.microsoft.com/china/hpc/ ...

  6. 【go】sdk + idea-plugin 开发工具安装

    http://golang.org/doc/install/source 第一步:windows 安装 git第二步$ git clone https://go.googlesource.com/go ...

  7. PHP正则表达式的逆向引用与子模式 php preg_replace应用

    mixed preg_replace ( mixed pattern, mixed replacement, mixed subject [, int limit]) 功能 在 subject 中搜索 ...

  8. Thinkphp模板中使用自定义函数的方法

    注意:自定义函数要放在项目应用目录/common/common.php中. 这里是关键. 模板变量的函数调用格式:{$varname|function1|function2=arg1,arg2,### ...

  9. composer的安装

    HomeGetting StartedDownloadDocumentationBrowse Packages Dependency management Declaring dependencies ...

  10. iOS优化内存方法推荐

    1. 用ARC管理内存 ARC(Automatic ReferenceCounting, 自动引用计数)和iOS5一起发布,它避免了最常见的也就是经常是由于我们忘记释放内存所造成的内存泄露.它自动为你 ...