题目链接

原题:

It turns out that 12 cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples.

12 cm: (3,4,5)
24 cm: (6,8,10)
30 cm: (5,12,13)
36 cm: (9,12,15)
40 cm: (8,15,17)
48 cm: (12,16,20)

In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using 120 cm it is possible to form exactly three different integer sided right angle triangles.

120 cm: (30,40,50), (20,48,52), (24,45,51)

Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed?

翻译:

唯一的整数边直角三角形

只能唯一地弯折成整数边直角三角形的电线最短长度是12厘米;当然,还有很多长度的电线都只能唯一地弯折成整数边直角三角形,例如:

12厘米: (3,4,5)
24厘米: (6,8,10)
30厘米: (5,12,13)
36厘米: (9,12,15)
40厘米: (8,15,17)
48厘米: (12,16,20)

相反地,有些长度的电线,比如20厘米,不可能弯折成任何整数边直角三角形,而另一些长度则有多个解;例如,120厘米的电线可以弯折成三个不同的整数边直角三角形。

120厘米: (30,40,50), (20,48,52), (24,45,51)

记电线长度为L,对于L ≤ 1,500,000,有多少种取值只能唯一地弯折成整数边直角三角形?

翻译来源

解题思路:

先参看维基百科,如下:

对正整数m、n,且m>n

若a 、b、c能构成直角三角形 ,则当且仅当:m和n互质,m-n是奇数

同时a、b、c乘以k的整数倍也能够成直角三角形。

解题方法就很明显的

先考虑m的取值范围

a、b是直角边、c是斜边,极端情况下:a=c=L/2,b=0,则n=0,m2  =L/2,则m = sqrt(L/2)

这样在依靠上面的公式即可

Java程序:

package Level3;

public  class PE075{

    void run(){
int L = 1500000;
int max_m = (int)Math.sqrt(L/2);
int[] triple = new int[L+1];
int a,b,c;
int s;
for(int m=2;m<=max_m;m++){
for(int n=1;n<m;n++){
if(gcd(m,n)==1 && (m+n)%2==1){
a = m*m-n*n;
b = 2*m*n;
c = m*m+n*n;
s = a+b+c;
// if(a*a+b*b==c*c){
while(s<=L){
triple[s]+=1;
s+=a+b+c;
}
// }
}
}
}
int count=0;
for(int i=2;i<=L;i++)
if(triple[i]==1)
count++;
System.out.println(count); } int gcd(int m,int n){
int tmp;
if(m<n){
tmp=m;
m=n;
n=tmp;
}
while(n!=0){
m = m - n;
if(m<n){
tmp = m;
m = n;
n = tmp;
}
}
return m;
} public static void main(String[] args){
long t0 = System.currentTimeMillis();
new PE075().run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
}
}

运行结果:

161667
running time=0s72ms

Python程序:

import math
import time
def gcd(m,n):
if m<n:
tmp = n
n = m
m = tmp
while n:
m = m%n
if m<n:
tmp = n
n = m
m = tmp
return m def PE075():
L = 1500000
count = 0
max_m = int(math.sqrt(L/2))
triple = [0 for i in range(0,L+1)]
for m in range(2,max_m+1):
for n in range(1,m):
if gcd(m,n)==1 and (m+n)%2==1:
a = m*m-n*n
b = 2*m*n
c = m*m+n*n
s = a+b +c
while s<=L:
triple[s] +=1
if triple[s]==1:
count+=1
if triple[s]==2:
count-=1
s+= a+b+c
return count if __name__=='__main__':
t0 = time.time()
print "result={0},running time={1}s".format(PE075(),(time.time()-t0))

运行结果:

result=161667,running time=1.09399986267s

Project Euler 75:Singular integer right triangles的更多相关文章

  1. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  2. Python练习题 049:Project Euler 022:姓名分值

    本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names sco ...

  3. Python练习题 048:Project Euler 021:10000以内所有亲和数之和

    本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...

  4. Python练习题 047:Project Euler 020:阶乘结果各数字之和

    本题来自 Project Euler 第20题:https://projecteuler.net/problem=20 ''' Project Euler: Problem 20: Factorial ...

  5. Python练习题 046:Project Euler 019:每月1日是星期天

    本题来自 Project Euler 第19题:https://projecteuler.net/problem=19 ''' How many Sundays fell on the first o ...

  6. Python练习题 045:Project Euler 017:数字英文表达的字符数累加

    本题来自 Project Euler 第17题:https://projecteuler.net/problem=17 ''' Project Euler 17: Number letter coun ...

  7. Python练习题 044:Project Euler 016:乘方结果各个数值之和

    本题来自 Project Euler 第16题:https://projecteuler.net/problem=16 ''' Project Euler 16: Power digit sum 2* ...

  8. Python练习题 043:Project Euler 015:方格路径

    本题来自 Project Euler 第15题:https://projecteuler.net/problem=15 ''' Project Euler: Problem 15: Lattice p ...

  9. Python练习题 042:Project Euler 014:最长的考拉兹序列

    本题来自 Project Euler 第14题:https://projecteuler.net/problem=14 ''' Project Euler: Problem 14: Longest C ...

随机推荐

  1. C#各种常用开源框架-支持开源!分享!

    下面罗列了开发及学习过程中所涉及的开源类库的列表! AForge.NET Accord.NET NAudio nVLC Speex C# WebServer FFmpeg FFmpeg.NET Flo ...

  2. jcscriput

    关于h5,相比前端的同事们都很了解了吧!h5里面有个canvas,现在用的蛮火.但是canvas里面的代码确实是有点繁多,特别是要对于图形做什么操作的时候...我昨天无意间发现了一个canvas的插件 ...

  3. TDirectory.CreateDirectory 完整、严谨的创建一个目录

    描述:创建一个目录,不包含多级目录(多级目录使用System.SysUtils.ForceDirectories,Vcl.FileCtrl.ForceDirectories已过时) procedure ...

  4. nginx+keepalived双主高可用负载均衡

    实验环境及软件版本:CentOS版本: 6.6(2.6.32.-504.el6.x86_64)nginx版本: nginx-1.6.3keepalived版本:keepalived-1.2.7 主LB ...

  5. windows创建桌面快捷方式的VBA脚本

    Dim wShell, oShortcut    'Dim strDesktop$ ' 为了与VBS兼容,    Dim strDesktop    ' 这里改写一下,测试通过...    Set w ...

  6. 12、在XAML中定义处理程序

    <Grid> <Button x:Name="btnTest" Width="120" Height="36" Conte ...

  7. linux设备驱动模型

    尽管LDD3中说对多数程序员掌握设备驱动模型不是必要的,但对于嵌入式Linux的底层程序员而言,对设备驱动模型的学习非常重要. Linux设备模型的目的:为内核建立一个统一的设备模型,从而又一个对系统 ...

  8. C#中DataTable与实体集合通用转换(使用扩展方法)

    本案例提供了:把DataRow转换为单个实体.dataTable转换为List泛型支持时间格式转换. 下文的方法都是扩展方法.扩展方法要求写在静态类中,方法也要静态. 它必须在一个非嵌套.非泛型的静态 ...

  9. Linux C 文件与目录1 创建目录

    linux C    创建目录 创建目录函数:mkdir 函数原型:int mkdir(char * pathname , mode_t mode); pathname字符指针是表示需要创建的目录路径 ...

  10. ibatis.net demo

    1. download ibatis.nethttps://code.google.com/p/mybatisnet/ 2. add all dll as reference to your proj ...