NYOJ 203 三国志
三国志
- 描述
-
《三国志》是一款很经典的经营策略类游戏。我们的小白同学是这款游戏的忠实玩家。现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中有很多不同数量的同种财宝。我们的小白同学虎视眈眈的看着这些城池中的财宝。
按照游戏的规则,他只要指派一名武将攻占这座城池,里面的财宝就归他所有了。不过一量攻占这座城池,我们的武将就要留守,不能撤回。因为我们的小白手下有无数的武将,所以他不在乎这些。
从小白的城池派出的武将,每走一公理的距离就要消耗一石的粮食,而他手上的粮食是有限的。现在小白统计出了地图上城池间的道路,这些道路都是双向的,他想请你帮忙计算出他能得到 的最多的财宝数量。我们用城池的编号代表城池,规定小白所在的城池为0号城池,其他的城池从1号开始计数。
- 输入
- 本题包含多组数据:
首先,是一个整数T(1<=T<=20),代表数据的组数
然后,下面是T组测试数据。对于每组数据包含三行:
第一行:三个数字S,N,M
(1<=S<=1000000,1<=N<=100,1<=M<=10000)
S代表他手中的粮食(石),N代表城池个数,M代表道路条数。
第二行:包含M个三元组行 Ai,Bi,Ci(1<=A,B<=N,1<=C<=100)。
代表Ai,Bi两城池间的道路长度为Ci(公里)。
第三行:包含N个元素,Vi代表第i个城池中的财宝数量。(1<=V<=100) - 输出
- 每组输出各占一行,输出仅一个整数,表示小白能得到的最大财富值。
- 样例输入
-
2
10 1 1
0 1 3
2
5 2 3
0 1 2 0 2 4 1 2 1
2 3 - 样例输出
-
2
5 - 来源
- 郑州大学校赛题目
- 上传者
- 张云聪
-
解题:最短路+0-1背包,先求出0点到各个城市的距离,然后用距离当作代价,在1...n个城市进行背包。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#include <queue>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc{
int to,w;
};
vector<arc>g[maxn];
queue<int>q;
int s,n,m;
int val[maxn],d[maxn],pre[maxn];
int dp[];
bool in[maxn];
void spfa(int src){
int i,j,u,v;
for(i = ; i <= n; i++){
d[i] = INF;
in[i] = false;
pre[i] = -;
}
d[src] = ;
while(!q.empty()) q.pop();
q.push(src);
in[src] = true;
while(!q.empty()){
u = q.front();
q.pop();
in[u] = false;
for(i = ; i < g[u].size(); i++){
v = g[u][i].to;
if(d[v] > d[u]+g[u][i].w){
d[v] = d[u]+g[u][i].w;
pre[v] = u;
if(!in[v]){
q.push(v);
in[v] = true;
}
}
}
}
}
int main(){
int t,i,j,u,v,w;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&s,&n,&m);
for(i = ; i <= n; i++)
g[i].clear();
for(i = ; i < m; i++){
scanf("%d%d%d",&u,&v,&w);
g[u].push_back((arc){v,w});
g[v].push_back((arc){u,w});
}
for(i = ; i <= n; i++)
scanf("%d",val+i);
spfa();
memset(dp,,sizeof(dp));
for(i = ; i <= n; i++){
for(j = s; j >= d[i]; j--){
dp[j] = max(dp[j],dp[j-d[i]]+val[i]);
}
}
printf("%d\n",dp[s]);
}
return ;
}
NYOJ 203 三国志的更多相关文章
- nyoj 203 三国志 dijkstra+01背包
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=203 思路:先求点0到每个点的最短距离,dijkstra算法,然后就是01背包了 我奇怪的 ...
- nyoj 203 三国志(最短路加01背包)
三国志 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描述 <三国志>是一款很经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.现在他把游戏简化一下, ...
- NYOJ 203 三国志(Dijkstra+贪心)
三国志 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描写叙述 <三国志>是一款非常经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.如今他把游戏简化一下 ...
- Nyoj 三国志(dijkstra+01背包)
描述 <三国志>是一款很经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中 ...
- FC游戏 《三国志2-霸王的大陆》攻略
<三国志2-霸王的大陆>是日本南梦宫公司研发的一款历史战略模拟游戏,于1992年06月10日在红白机平台上发行. 在开始游戏选择君主时(一定要在君主未出现前的画面时进行第二步),按住1P的 ...
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- NYOJ 333
http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...
- Acadia Lab 203 + Lab 231
在做完 Lab 6 之后,惊觉选做实验缺口很大,于是遍历了一遍夏任务,找到了一条最省力的路线. 做完 Lab 6 的连线不用拆,可以接下来做以下两个实验: Lab 203 网络时钟 核心代码如下: v ...
随机推荐
- Kruskal HDOJ 1863 畅通工程
题目传送门 /* 此题为:HDOJ 1233 + HDOJ 1232 */ #include <cstdio> #include <algorithm> #include &l ...
- mysql 三大范式【转载】
第一范式(1NF,normal format):字段不能再分. 这是字段的原子性.例如:字段“学期时间”:2014-9-1,2015-1-15. 这个字段“学期时间”可以再分为“学期开始时间”,201 ...
- Suricata的输出
不多说,直接上干货! 见官网 https://suricata.readthedocs.io/en/latest/output/index.html 总的来说,Suricata采集下来的数据输出分为: ...
- 移动端UI自动化Appium测试——Android系统下使用uiautomator viewer查找元素
在利用Appium做自动化测试时,最重要的一步就是获取对应的元素值,根据元素来对对象进行对应的操作,如何获得对象元素呢?Appium Server Console其实提供了一个界面对话框&qu ...
- AJPFX总结抽象类和接口的区别
/* * 抽象类和接口的区别 * 1.成员的区别 * ...
- Hello Shell
shell是Linux平台的瑞士军刀,能够自动化完成很多工作.要了解UNIX 系统中可用的 Shell,可以使用 cat /etc/shells 命令.使用 chsh 命令 更改为所列出的任何 She ...
- 闲着蛋疼没事干,写个Mac端的Kcptun Client管理器
原理: 执行一行脚本 输入服务器地址,端口,密码等做了图形化编辑 可以控制Kcptun是否正在运行 App已上传github https://github.com/nicky2k8/KcptunCli ...
- Android系统固件定制方式
target_product.mkAndroid系统在构建关于某种产品的固件时,一般会根据特定于该产品的具体target_product.mk来配置生成整个Android系统./target_prod ...
- myBatis参数处理 myBatis佟刚课程笔记
单个参数:myBatis不会做特殊处理 #{参数名}: 取出参数值 多个参数: myBatis会做特殊处理 多个参数会被封装成一个MAP key:param1 param2.... param10,或 ...
- executeFind(XXX) is undefined for the type hibernateTemplate(大概是这个错误吧)
两句话,jar包版本不一样,类中包含的方法可能有改变. 出错时用的是spring5.x版本,但是没有找到我的api.(不记得放在那里了),所以换了spring的版本(换成了spring3.x).问题解 ...