题目大意:

  一个长度为n的序列,其中第i个数为a[i]。修改一个点的值询问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列。

思路:

  1.一段区间符合要求满足:(1)区间中的max-min=(r-l)*公差;(2)区间相邻的两个数的差的gcd为公差;(3)区间内的数不重复。
  2.(1)(2)用一个线段树维护,(3)首先,序列出现过的值最多只有600000种,所以可以对于每个值开一个set(离散化),对应的id用一个map存起来。然后维护一个pre[i],表示当前a[i]这个值,在i前面最后一次出现的位置。那么满足(3),当且仅当区间[l,r]的pre的最大值小于l。这个也是用线段树维护。然后看修改操作:在set上找前一个数、后一个数,然后修改相应的值。

反思:

  (1)(2)比较好求就打了,网上有人这样A了,(3)既不理解又不会STL就不打了(逃……
  单点时公差可为任何数,要特判。线段树修改时从底向上更新,gcd原来与最大最小值分开和加法一样打的,可WA了就换成这样了(不过原来的应该是能A的)。

代码:

 #include<cstdio>
const int M=;
struct data{ int l,r,max,min,gcd; }t[M<<],u,v;
int p,a[M]; int abs(int x) { return x>?x:-x; }
int Min(int x,int y) { return x<y?x:y; }
int Max(int x,int y) { return x>y?x:y; } int read()
{
int x=; char ch=getchar();
for (;ch< || ch>;ch=getchar());
for (;ch> && ch<;ch=getchar()) x=(x<<)+(x<<)+ch-;
return x;
} int Gcd(int x,int y)
{
if (!x) return y; if (!y) return x;
for (int z;y;z=y,y=x%z,x=z);
return x;
} void push_up(int k)
{
t[k].l=t[k<<].l,t[k].r=t[k<<|].r;
t[k].max=Max(t[k<<].max,t[k<<|].max);
t[k].min=Min(t[k<<].min,t[k<<|].min);
t[k].gcd=Gcd(Gcd(t[k<<].gcd,t[k<<|].gcd),abs(t[k<<].r-t[k<<|].l));
} void build(int l,int r,int k)
{
if (l==r) { t[k].max=t[k].min=t[k].l=t[k].r=a[l]; return; }
int mid=l+r>>; build(l,mid,k<<),build(mid+,r,k<<|),push_up(k);
} void change(int l,int r,int k,int x,int cur)
{
if (l==r) { t[cur].max=t[cur].min=t[cur].l=t[cur].r=x; return; }
int mid=l+r>>;
if (k>mid) change(mid+,r,k,x,cur<<|);
else change(l,mid,k,x,cur<<);
push_up(cur);
} data query(int l,int r,int L,int R,int cur)
{
if (L<=l && r<=R) return t[cur];
int mid=l+r>>; data x,y,z=v;
bool fl=,fr=;
if (L<=mid) fl=,x=query(l,mid,L,R,cur<<);
if (R>mid) fr=,y=query(mid+,r,L,R,cur<<|);
if (fl)
if (fr) z.l=x.l,z.r=y.r,z.max=Max(x.max,y.max),
z.min=Min(x.min,y.min),z.gcd=Gcd(Gcd(x.gcd,y.gcd),abs(x.r-y.l));
else z=x;
else z=y;
return z;
} int main()
{
int n=read(),m=read(),x,y,k,i;
for (i=;i<=n;++i) a[i]=read();
for (build(,n,);m--;)
if (read()^) x=read()^p,y=read()^p,change(,n,x,y,);
else
{
x=read()^p,y=read()^p,k=read()^p,u=query(,n,x,y,);
if (x==y || u.gcd==k && u.max-u.min==(y-x)*k) puts("Yes"),++p;
else puts("No");
}
return ;
}

BZOJ4373 算术天才与等差数列 题解的更多相关文章

  1. BZOJ4373 算术天才⑨与等差数列 【线段树】*

    BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...

  2. 【线段树 集合hash】bzoj4373: 算术天才⑨与等差数列

    hash大法好(@ARZhu):大数相乘及时取模真的是件麻烦事情 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次 ...

  3. [BZOJ4373]算术天才⑨与等差数列(线段树)

    [l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...

  4. BZOJ4373 算术天才⑨与等差数列(线段树)

    看上去很难维护,考虑找一些必要条件.首先显然最大值-最小值=k*(r-l).然后区间内的数需要模k同余.最后区间内的数两两不同(k=0除外).冷静一下可以发现这些条件组合起来就是充分的了. 考虑怎么维 ...

  5. BZOJ4373 : 算术天才⑨与等差数列

    设$pre[i]$表示第$i$个数上一次出现的位置,$d[i]=abs(a[i]-a[i+1])$. 用线段树维护区间内$a$的最小值.最大值,$pre$的最大值以及$d$的$\gcd$. 对于询问$ ...

  6. BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)

    题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...

  7. bzoj4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...

  8. 【BZOJ4373】算术天才⑨与等差数列 线段树+set

    [BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...

  9. 【BZOJ4373】算术天才⑨与等差数列 [线段树]

    算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...

随机推荐

  1. Dapper系列之三:Dapper的事务修改与删除

    Dapepr的Update和Delete Dapper入门Dapper查询 上两篇文章我们介绍Dapper中添加和查询.本篇文章我们继续讲解修改和删除....如果本篇文章看不懂,请看阅读上两篇Dapp ...

  2. oracle 函数、聚焦函数

    oracle 常用的函数 以及 聚焦函数 --1,字符函数 --当没有表可以用个的时候oracle自带一个虚表dual -- || 表示连接符号 将字符串连接到一起 式显示 Lower(char):将 ...

  3. 从零开始docker部署flask

    1.下载一个Ubuntu镜像 2.启动镜像,使用apt-get安装python.安装pip,建议也装个vim吧 3.通过以上的容器生成一个新的镜像,命令如下docker commit afcaf46e ...

  4. AJPFX分享eclipse自动生成java注释方法

    设置方法介绍:eclipse中:Windows->Preferences->Java->Code Style->Code Template->Comments,然后对应的 ...

  5. macOS 的 JDK 安装问题 (Homebrew)

    Homebrew 介绍 Homebrew 是 macOS 下的一个非常好用的包管理工具, caskroom 则是基于 Homebrew 构建的一个强大的应用程序管理器. 具体用法可以餐参考 像 Mac ...

  6. linux小白成长之路12————​Docker部署Nginx

    [内容指引] Docker安装Nginx: 简单启动: 准备配置文件: 一.Docker安装Nginx 指令:docker pull nginx 二.简单启动 指令:docker run --name ...

  7. 【学习笔记】深入理解js原型和闭包(0)——目录

    文章转载:https://www.cnblogs.com/wangfupeng1988/p/4001284.html 说明: 本篇文章一共16篇章,外加两篇后补的和一篇自己后来添加的学习笔记,一共19 ...

  8. Android Platform Version 和 API Level对照

    Platform Version API Level VERSION_CODE Notes Android 5.1 22 LOLLIPOP_MR1 Platform Highlights Androi ...

  9. STM32&AT指令NBIOT模组

    #include "nbiot.h" #include "string.h" #include "stdlib.h" #include &q ...

  10. JDBC基础-setFetchSize方法

    在Statement和ResultSet接口中都有setFetchSize方法 void setFetchSize(int rows) throws SQLException 查看API文档 Stat ...