传送门

以为对于这类问题线段树都能解决,分块比线段树菜,结果培训完才知道线段树是一种特殊的分块方法,有的分块的题线段树不能做,看来分块还是有必要学的。

对于这个题,先分块,然后另开一个数组对于每个块内排序。

区间加的话,加一个标记,每一个整块区间加,里面的数的相对大小不变,而左右两边零散的块直接暴力重构。

查询可以对于每个块二分查找。

时间复杂度应该是 nlogn + Q√nlog√n,刚好卡过。。

注意:第10个点会被卡,手写二分比stl的lower_bound快一点,可以避免被卡。

   也可以在 S = sqrt(n) 后面 + x,x 不要太大也不要太小,不知道为什么,速度也会快点,玄学啊。

%%%有些dalao不知道怎么写的,1000ms

——代码(最终只能优化到1600ms)

 #include <cmath>
#include <cstdio>
#include <iostream>
#include <algorithm>
#define LL long long const int MAXN = ;
int n, q, S, C;
int belong[MAXN], st[MAXN], ed[MAXN];
LL a[MAXN], b[MAXN], add[MAXN]; inline LL read()
{
LL x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = x * + ch - '';
return x * f;
} inline int find(int x, int y, int z)
{
int mid;
while(x < y)
{
mid = (x + y) >> ;
if(b[mid] >= z) y = mid;
else x = mid + ;
}
return x;
} inline void retreat(int x, int y)
{
int i;
for(i = x; i <= y; i++) b[i] = a[i];
std::sort(b + x, b + y + );
} inline void init()
{
int i, j;
S = int(sqrt(n)) + ;
for(i = ; i <= n; i++) scanf("%d", &a[i]);
for(i = ; i <= n; i += S)
{
st[++C] = i;
ed[C] = std::min(i + S - , n);
}
for(i = ; i <= C; i++)
for(j = st[i]; j <= ed[i]; j++)
belong[j] = i;
for(i = ; i <= C; i++) retreat(st[i], ed[i]);
} inline void update(int x, int y, LL z)
{
int i, l = belong[x], r = belong[y];
if(l == r)
{
for(i = x; i <= y; i++) a[i] += z;
retreat(st[l], ed[r]);
}
else
{
for(i = x; i <= ed[l]; i++) a[i] += z;
for(i = l + ; i <= r - ; i++) add[i] += z;
for(i = st[r]; i <= y; i++) a[i] += z;
retreat(st[l], ed[l]);
retreat(st[r], ed[r]);
}
} inline int query(int x, int y, LL z)
{
int i, l = belong[x], r = belong[y], ans = ;
if(l == r) return y + - find(x, y + , z - add[l]);
ans += ed[l] - find(x, ed[l] + , z - add[l]) + ;
for(i = l + ; i <= r - ; i++) ans += ed[i] - find(st[i], ed[i] + , z - add[i]) + ;
ans += y - find(st[r], y + , z - add[r]) + ;
return ans;
} int main()
{
int i, j, x, y;
LL z;
char ch;
n = read();
q = read();
init();
for(i = ; i <= q; i++)
{
while ((ch=getchar()) < 'A' || ch > 'Z');
x = read();
y = read();
z = read();
if(ch == 'M') update(x, y, z);
else printf("%d\n", query(x, y, z));
}
return ;
}

[luoguP2801] 教主的魔法(二分 + 分块)的更多相关文章

  1. BZOJ_3343_教主的魔法_分块+二分查找

    BZOJ_3343_教主的魔法_分块+二分查找 题意:教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列被编号为 ...

  2. P2801 教主的魔法(分块)

    P2801 教主的魔法 区间加法,区间查询 显然就是分块辣 维护一个按块排好序的数组. 每次修改依然是整块打标记,零散块暴力.蓝后对零散块重新排序. 询问时整块二分,零散块暴力就好辣 注意细节挺多和边 ...

  3. BZOJ 3343:教主的魔法(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3343 [题目大意] 给出一个数列,有区间加法操作,询问区间大于等于c的数字个数 [题解 ...

  4. 【Luogu】P2801教主的魔法(分块)

    题目链接 激动qwq.这是我A的第一道分块. 分块之后对块内元素暴力sort.修改的时候对于整块打个标记,查询的时候只需要查C-tag就行了 对于非整块,暴力修改,改完之后sort 对于查询……非整块 ...

  5. bzoj3343 教主的魔法【分块入门】By cellur925

    题意:维护一个数列,给出维护区间加法,询问区间内大于等于某个值的元素个数. 算法:分块.因为本题第二问显然可以用二分的思想,但是这貌似并不符合区间可加性,线段树好像就不好用了呢.所以本蒟蒻学习了分块. ...

  6. BZOJ 3343 教主的魔法(分块)

    题意: 有一个1e6的数组,t次操作:将[l,r]内的值增加w,或者查询[l,r]内的值大于等于add的 思路: 分块,块大小为sqrt(n),每次只需要暴力头尾两块,中间的整块打标记, 对于查询查操 ...

  7. Luogu2801 教主的魔法 (分块)

    与hzw的分块2类似,放vector排序 #include <iostream> #include <cstdio> #include <cstring> #inc ...

  8. 【BZOJ3343】教主的魔法 分块+二分

    Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的 ...

  9. 洛谷P2801 教主的魔法 [分块,二分答案]

    题目传送门 教主的魔法 题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. ...

随机推荐

  1. Python实现决策树C4.5算法

    为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...

  2. DataTable数据导入DataBase

    EXcel---->DataTable--->DataBase /// <summary> /// Excel数据-->DataTable导入DataBase /// & ...

  3. 协程和I/O模型

    1.协程: 单线程实现并发 在应用程序里控制多个任务的切换+保存状态 优点: 应用程序级别速度要远远高于操作系统的切换 缺点: 多个任务一旦有一个阻塞没有切换,整个线程都阻塞在原地 该线程内的其他的任 ...

  4. CCF|火车购票|Java|80分

    import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Sc ...

  5. Sql Server 2008R2升级 Sql Server 2012 问题

    环境: Windows server 2008 r2 Standard +SqlServer2008R2  内网环境需要升级为SQL server 2012 升级安装时提示版本不支持 网上查询相关问题 ...

  6. centos7 系统安全加固方案

    一.密码长度与有效期 默认配置: [root@i-1y3we23j ~]# cat /etc/login.defs |grep PASS_ |grep -v '#' PASS_MAX_DAYS PAS ...

  7. 搜索 || DFS || POJ 1321 棋盘问题

    棋盘上#可以放,.不可以放,每行每列只能放一个 *解法:类似八皇后问题 dfs+回溯,考虑每一行和每一列 [[[[dfs的样子]]]]最前面写达到目标状态or不能走下去了 然后return #incl ...

  8. ES6 第一章 let和const命令 具体参照http://es6.ruanyifeng.com

    1.let类似于var用用来定义变量 1)let没有预解析,不存在变量提升 // var 的情况 console.log(foo); // 输出undefined var foo = 2; // le ...

  9. \p{space}|\p{Hex}|\p{Digit}|转译符|\1|\g{-1}|[^ab]|/([^\d\D]+)/

    小骆驼 第七章 漫游正则表达式王国 #!/usr/bin/perl use strict; use warnings; $_ = 'ab \ cde f ghijk10.x12ln'; if(/d/) ...

  10. node程序的部署神器pm2的基本使用

    pm2是从nodejs衍生出来的服务器进程管理工具,可以做到开机就启动nodejs.当然了,也可以用nohup来做这件事情的. 前言 众所周知,Node.js运行在Chrome的JavaScript运 ...