R语言学习 - 线图绘制
profile="Pos;H3K27ac
-5000;8.7
-4000;8.4
-3000;8.3
-2000;7.2
-1000;3.6
0;3.6
1000;7.1
2000;8.2
3000;8.4
4000;8.5
5000;8.5"
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";") # 在melt时保留位置信息
# melt格式是ggplot2画图最喜欢的格式
# 好好体会下这个格式,虽然多占用了不少空间,但是确实很方便
# 这里可以用 `xvariable`,也可以是其它字符串,但需要保证后面与这里的一致
# 因为这一列是要在X轴显示,所以起名为`xvariable`。
profile_text$xvariable = rownames(profile_text)
library(ggplot2)
library(reshape2)
data_m <- melt(profile_text, id.vars=c("xvariable"))
data_m
xvariable variable value
1 -5000 H3K27ac 8.7
2 -4000 H3K27ac 8.4
3 -3000 H3K27ac 8.3
4 -2000 H3K27ac 7.2
5 -1000 H3K27ac 3.6
6 0 H3K27ac 3.6
7 1000 H3K27ac 7.1
8 2000 H3K27ac 8.2
9 3000 H3K27ac 8.4
10 4000 H3K27ac 8.5
11 5000 H3K27ac 8.5
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=xvariable, y=value), color=variable) + geom_line()
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()
geom_path: Each group consists of only one observation.Do you need to adjust the group aesthetic?
p <- ggplot(data_m, aes(x=xvariable, y=value, color=variable, group=variable)) + geom_line() + theme(legend.position=c(0.1,0.9))
p
summary(data_m)
xvariable variable
Length:11 H3K27ac:11
Class :character
Mode :character
data_m$xvariable <- as.numeric(data_m$xvariable) #再检验下
is.numeric(data_m$xvariable)
[1] TRUE
# 注意断行时,加号在行尾,不能放在行首
p <- ggplot(data_m, aes(x=xvariable, y=value,color=variable,group=variable)) +
geom_line() + theme(legend.position=c(0.1,0.8))
p
p <- ggplot(data_m, aes(x=xvariable, y=value,color=variable,group=variable)) +
geom_line() + stat_smooth(method="auto", se=FALSE) +
theme(legend.position=c(0.1,0.8))
p
p <- ggplot(data_m, aes(x=xvariable, y=value,color=variable,group=variable)) +
stat_smooth(method="auto", se=FALSE) + theme(legend.position=c(0.1,0.8))
p
profile = "Pos;h3k27ac;ctcf;enhancer;h3k4me3;polII
-5000;8.7;10.7;11.7;10;8.3
-4000;8.4;10.8;11.8;9.8;7.8
-3000;8.3;10.5;12.2;9.4;7
-2000;7.2;10.9;12.7;8.4;4.8
-1000;3.6;8.5;12.8;4.8;1.3
0;3.6;8.5;13.4;5.2;1.5
1000;7.1;10.9;12.4;8.1;4.9
2000;8.2;10.7;12.4;9.5;7.7
3000;8.4;10.4;12;9.8;7.9
4000;8.5;10.6;11.7;9.7;8.2
5000;8.5;10.6;11.7;10;8.2" profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";") profile_text$xvariable = rownames(profile_text)
data_m <- melt(profile_text, id.vars=c("xvariable"))
data_m$xvariable <- as.numeric(data_m$xvariable) # 这里group=variable,而不是group=1 (如果上面你用的是1的话)
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=xvariable, y=value,color=variable,group=variable)) + stat_smooth(method="auto", se=FALSE) + theme(legend.position=c(0.85,0.2))
p
profile = "Pos;h3k27ac;ctcf;enhancer;h3k4me3;polII
-5000;8.7;10.7;11.7;10;8.3
-4000;8.4;10.8;11.8;9.8;7.8
-3000;8.3;10.5;12.2;9.4;7
-2000;7.2;10.9;12.7;8.4;4.8
-1000;3.6;8.5;12.8;4.8;1.3
0;3.6;8.5;13.4;5.2;1.5
1000;7.1;10.9;12.4;8.1;4.9
2000;8.2;10.7;12.4;9.5;7.7
3000;8.4;10.4;12;9.8;7.9
4000;8.5;10.6;11.7;9.7;8.2
5000;8.5;10.6;11.7;10;8.2" profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";") profile_text_rownames <- row.names(profile_text) profile_text$xvariable = rownames(profile_text)
data_m <- melt(profile_text, id.vars=c("xvariable")) # 就是这一句,会经常用到
data_m$xvariable <- factor(data_m$xvariable, levels=profile_text_rownames, ordered=T) # geom_line设置线的粗细和透明度
p <- ggplot(data_m, aes(x=xvariable, y=value,color=variable,group=variable)) + geom_line(size=1, alpha=0.9) + theme(legend.position=c(0.85,0.2)) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) # stat_smooth
#p <- ggplot(data_m, aes(x=xvariable, y=value,color=variable,group=variable)) + stat_smooth(method="auto", se=FALSE) + theme(legend.position=c(0.85,0.2)) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1))
p
到此完成了线图的基本绘制,虽然还可以,但还有不少需要提高的地方,比如在线图上加一条或几条垂线、加个水平线、修改X轴的标记(比如0换为TSS)、设置每条线的颜色等。
R语言学习 - 线图绘制的更多相关文章
- R语言学习 - 线图一步法
首先把测试数据存储到文件中方便调用.数据矩阵存储在line_data.xls和line_data_melt.xls文件中 (直接拷贝到文件中也可以,这里这么操作只是为了随文章提供个测试文件,方便使用. ...
- R语言学习 - 热图绘制heatmap
生成测试数据 绘图首先需要数据.通过生成一堆的向量,转换为矩阵,得到想要的数据. data <- c(1:6, 6:1, 6:1, 1:6, (6:1)/10, (1:6)/10, (1:6)/ ...
- R语言-画线图
R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > ...
- R语言学习 - 热图简化
绘制热图除了使用ggplot2,还可以有其它的包或函数,比如pheatmap::pheatmap (pheatmap包中的pheatmap函数).gplots::heatmap.2等. 相比于gg ...
- R语言学习笔记:绘制地图
在R中画地图先从简单的maps包开始. library("maps") 在这个maps包中有一些数据集,用命令data(package=”maps”),可以看到如下数据: cana ...
- R语言学习 - 热图美化
实际应用中,异常值的出现会毁掉一张热图.这通常不是我们想要的.为了更好的可视化效果,需要对数据做些预处理,主要有对数转换,Z-score转换,抹去异常值,非线性颜色等方式. 对数转换 为了方便描述,假 ...
- R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)
箱线图 箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图.在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具.就这样都 ...
- R语言学习 第四篇:函数和流程控制
变量用于临时存储数据,而函数用于操作数据,实现代码的重复使用.在R中,函数只是另一种数据类型的变量,可以被分配,操作,甚至把函数作为参数传递给其他函数.分支控制和循环控制,和通用编程语言的风格很相似, ...
- R语言学习笔记:基础知识
1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) ...
随机推荐
- list-style样式不显示问题
<li> display要使用 list-item ,不要使用block,要不然会造成不显示的问题.
- linux用于文件解压缩的命令
1 gzip gzip -<压缩率> 压缩率用数字(1-9)来表示,越大,则压缩率越大. 2 bz2 解压bz2 bzip2 -d filename.bz2
- Python执行系统命令并获得输出的几种方法
[root@a upfc]# ./ffmpeg-linux64-v3.3.1 -i a.mp3 ffmpeg version N-86111-ga441aa90e8-static http://joh ...
- Selenium Webdriver弹出框 微博分享的内容控制与结果生成
browser.window_handles for i in ugc_url_l: js = 'window.location.href="{}"'.format(i) brow ...
- Codeforces Round #311 (Div. 2) D - Vitaly and Cycle
D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard ...
- POJ 2562:Primary Arithmetic
Primary Arithmetic Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11135 Accepted: 40 ...
- BZOJ_1576_[Usaco2009 Jan]安全路经Travel&&BZOJ_3694_最短路_树链剖分+线段树
Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...
- 【POJ 1470】 Closest Common Ancestors
[题目链接] 点击打开链接 [算法] 离线tarjan求最近公共祖先 [代码] #include <algorithm> #include <bitset> #include ...
- "git rm" 和 "rm" 的区别(转载)
转自:http://yang3wei.github.io/blog/2013/02/03/git-rm-he-rm-de-qu-bie/ 这是一个比较肤浅的问题,但对于 git 初学者来说,还是有必要 ...
- bzoj 2730: [HNOI2012]矿场搭建【tarjan】
先tarjan找割点和点双连通分量,然后对一个点双,如果没有割点,那么需要建立两个出口(割掉一个另一个备用):如果只有一个割点,出口可以设立在任意一个非割点的地方:如果有两个及以上个割点,就不用建出口 ...