题意:求互质的m和n的最大不能组合数和不能组合数的个数

思路:m和n的最大不能组合数为m*n-m-n,不能组合数的个数为(m-1)*(n-1)/2

推导:

  先讨论最大不能组合数

  因为gcd(m,n)=1,所以 0,n,2*n,3*n,...(m-1)*n(共m个数字)分别除以m,余数肯定不同,且为{0,1,2,3...m-1}中的某数

  若存在非负数p,q使得pm+qn=x,x为可组合值,两边对m取余,则(q*n)%m==x%m,p*m>=0,所以只要x>q*n,x都能被组合出来。当q<m时,能出现所有余数,所以当x>=(m-1)*n时,x必定可被组合。

  从(m-1)*n往下寻找,第二大的q*n为(m-2)*n=(m-1)*n-n,不妨令m<n。只要比(m-1)*n-n大且不与(m-1)*n同余的数字都符合要求,即(m-1)*n,(m-1)*n-1,...(m-1)*n-(m-1),都符合要求,只有(m-1)*n-m>(m-2)*n,且同余,在m>n的情况下,由于对于q*n相邻m-1个必定不同余,所以结果一样。

  所以最大的不符合数是(m-1)*n-m,即m*n-n-m

  再讨论不符合要求的方案数

  从大到小讨论q*n(m>n)

  ①对于(m-1)*n,不符合要求的是比(m-1)*n小且与它同余的数,就是(m-1)*n-m,(m-1)*n-2*m...  

  ②对于(m-2)*n,不符合要求的是(m-2)*n-m,(m-2)*n-2*m...

  ③对于n,不符合要求的就是,n-m..

  所以ans=n/m+(2*n)/m+(3*n)/m...+((m-1)*n)/m=(m-1)*(n-1)/2    

  对于n*m/m=n,这个是整除的,所以(i*n+(m-i)*n)/m=n

  由于i*n/m必定不整除,所以i*n%m+(m-i)*n%m=m;

  因而(i*n)/m+((m-i)*n)/m=n-1,得出:ans=n/m+(2*n)/m+...((m-1)*n)/m=(n/m+(m-1)*n/m)+(2*n/m+(m-2)*n/m)+...=(n-1)*(m-1)/2

标准程序

 #include<iostream>
using namespace std;
int main()
{
int m,n;
while(cin>>m>>n)
{
cout<<m*n-m-n<<" "<<(m-)*(n-)/<<endl;
}
return ;
}

hdu 1792 A New Change Problem(互质数之间最大不能组合数和不能组合数的个数)的更多相关文章

  1. 数学--数论--HDU 1792 A New Change Problem (GCD+打表找规律)

    Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can ...

  2. HDU 4974 A simple water problem(贪心)

    HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...

  3. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  4. HDU1792A New Change Problem(GCD规律推导)

    A New Change Problem Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  5. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  6. 数学--数论--HDU1792A New Change Problem(GCD规律推导)

    A New Change Problem Problem Description Now given two kinds of coins A and B,which satisfy that GCD ...

  7. 题解报告:hdu 1032 The 3n + 1 problem(克拉兹问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1032 Problem Description Problems in Computer Science ...

  8. HDU 5055 Bob and math problem(简单贪心)

    http://acm.hdu.edu.cn/showproblem.php?pid=5055 题目大意: 给你N位数,每位数是0~9之间.你把这N位数构成一个整数. 要求: 1.必须是奇数 2.整数的 ...

  9. hdu 5349 MZL's simple problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5349 MZL's simple problem Description A simple proble ...

随机推荐

  1. javascript前端面试题及答案整理

    Part1 手写代码 现场手写代码是现在面试中很常见的一类面试题,考察基础的数据结构与算法能力. 1 数组去重的实现 基本数组去重 Array.prototype.unique = function( ...

  2. Gym 100962J Jimi Hendrix (树形DP)

    题意:给定一棵树,然后每条边有一个字母,然后给定一行字符串,问你能不能从这棵树上找到,并输出两个端点. 析:树形DP,先进行递归到叶子结点,然后再回溯,在回溯的时候要四个值,一个是正着匹配的长度和端点 ...

  3. bzoj 3714: [PA2014]Kuglarz【最小生成树】

    参考:https://blog.csdn.net/aarongzk/article/details/48883741 没想到吧.jpg 来自题解: "如果用sum[i]表示前i个杯子底球的总 ...

  4. poj 3130 How I Mathematician Wonder What You Are! 【半平面交】

    求多边形的核,直接把所有边求半平面交判断有无即可 #include<iostream> #include<cstdio> #include<algorithm> # ...

  5. HTML中a标签自动识别电话、邮箱

    HTML中a标签自动识别电话.邮箱 联系电话:<a href="tel:010-88888888">010-88888888</a><br> 联 ...

  6. 大数据技术之_25_手机APP信息统计系统项目_01_APP 数据生成模块 + 数据收集模块 + 数据处理模块框架搭建 + 业务需求处理 + 数据展示模块 +项目总结 + 问题总结

    一 项目概述1.1 角色1.2 业务术语1.3 项目效果展示二 项目需求三 项目概要3.1 项目技术架构3.2 项目目录结构3.3 项目技术选型3.4 项目整体集群规划3.5 创建项目工程四 APP ...

  7. nginx静态资源服务器简单配置

    有时候我们可以把服务器的一些文件放在固定目录以便下载,比如image,css,js等.就可以使用nginx转发静态资源. 参考链接:https://blog.csdn.net/name_is_wl/a ...

  8. VS2010编译错: #error : This file requires _WIN32_WINNT to be #defined at least to 0x0403...的解决方法

        最近拿到一个别人的工程,是使用VS.net创建的,而我的机器上只有vs2010,于是用自带的转换工具将它转换成vs2010的工程,转换之前我就很担心,怕转换完后会出问题,但是没有办法,我实在是 ...

  9. javascript---DOM大编程

    编程练习 制作一个表格,显示班级的学生信息. 要求: 1. 鼠标移到不同行上时背景色改为色值为 #f2f2f2,移开鼠标时则恢复为原背景色 #fff 2. 点击添加按钮,能动态在最后添加一行 3. 点 ...

  10. 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...