题目描述:

给出一棵n个节点的树,每个点初始m值为1。

你有三种操作:

1.Add l r k ,将l到r路径上所有点m值加k。

2.Multi l r k ,将l到r路径上所有点m值乘k。

3.Query l r ,设x是l到r路径上的点,y是x的m值。假设有1~y共y个点,随机打乱,求形成错排的概率。

(k<=1000,n<=80000)

题解:

树剖正解?

(反正我用的dfs序+并查集)

首先1000^80000错排怎么搞啊?

要明白我们真正要的并不是错排数,而是错排数/阶乘。

打表后发现他是:

0.0,0.5,0.333333333,0.375,0.366666667,0.368055556,0.367857143,0.367881944,0.367879464

最后一位用的一般值。

(后来发现这个精度依然不够,要用错排递推直接打表。不然会卡精。)

树链怎么修改啊?

其实可以用单点修改……

重点在于一共只有80000个点,如果m值超过15就不用处理了,保留15位就够了……

所以单点最多修改80000*15次……

并查集维护。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
//lgl AK in NOIp
#define N 80050
double num[],tmp[];
void init()
{
double now = ;
tmp[]=0.0,tmp[]=1.0;
num[]=0.5;
for(int i=;i<;i++)
{
now*=(double)i;
tmp[i]=(double)(i-)*(tmp[i-]+tmp[i-]);
num[i]=(double)tmp[i]/now;
}
}
int n,hed[N],cnt,q;
char ch[];
struct EG
{
int to,nxt;
}e[*N];
void ae(int ff,int t)
{
e[++cnt].to = t;
e[cnt].nxt = hed[ff];
hed[ff] = cnt;
}
struct aaafku
{
int s[*N];
void ins(int x,int d)
{
while(x<*N)
{
s[x]+=d;
x+=(x&(-x));
}
}
int qry(int x)
{
int ret = ;
while(x)
{
ret+=s[x];
x-=(x&(-x));
}
return ret;
}
}f[];
int las[N];
int dep[N],siz[N],fa[N],son[N],top[N],typ[N];
int tin[N],tout[N],tim;
void dfs1(int u,int ff)
{
tin[u]=++tim;
typ[u]=;
siz[u]=;
dep[u]=dep[ff]+;
las[u]=u;
f[].ins(tin[u],);
for(int j=hed[u];j;j=e[j].nxt)
{
int to = e[j].to;
if(to==ff)continue;
fa[to]=u;
dfs1(to,u);
siz[u]+=siz[to];
if(siz[to]>siz[son[u]])son[u]=to;
}
tout[u]=tim;
f[].ins(tout[u]+,-);
}
void dfs2(int u,int tp)
{
top[u] = tp;
if(!son[u])return ;
dfs2(son[u],tp);
for(int j=hed[u];j;j=e[j].nxt)
{
int to = e[j].to;
if(to!=fa[u]&&to!=son[u])
dfs2(to,to);
}
}
int get_lca(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
x=fa[top[x]];
}
return dep[x]<dep[y]?x:y;
}
int get_las(int x)
{
if(las[x]==x)return x;
return las[x]=get_las(las[x]);
}
void deala(int u,int k,int lim)
{
if(dep[u]<=lim)return ;
f[typ[u]].ins(tin[u],-);
f[typ[u]].ins(tout[u]+,);
typ[u] = min(,typ[u]+k);
f[typ[u]].ins(tin[u],);
f[typ[u]].ins(tout[u]+,-);
deala(get_las(fa[u]),k,lim);
if(typ[u]==)las[u]=fa[u];
}
void dealb(int u,int k,int lim)
{
if(dep[u]<=lim)return ;
f[typ[u]].ins(tin[u],-);
f[typ[u]].ins(tout[u]+,);
typ[u] = min(,typ[u]*k);
f[typ[u]].ins(tin[u],);
f[typ[u]].ins(tout[u]+,-);
dealb(get_las(fa[u]),k,lim);
if(typ[u]==)las[u]=fa[u];
}
int main()
{
// freopen("yuyuko.in","r",stdin);
// freopen("yuyuko.out","w",stdout);
init();
scanf("%d",&n);
for(int ff,t,i=;i<n;i++)
{
scanf("%d%d",&ff,&t);
ae(ff,t),ae(t,ff);
}
dfs1(,),dfs2(,);
scanf("%d",&q);
for(int l,r,k,i=;i<=q;i++)
{
scanf("%s",ch+);
if(ch[]=='Q')
{
scanf("%d%d",&l,&r);
int lca = get_lca(l,r);
int ff = fa[lca];
double ans = 0.0;
for(int j=;j<;j++)
{
int sum = f[j].qry(tin[l])+f[j].qry(tin[r])-f[j].qry(tin[lca])-f[j].qry(tin[ff]);
ans+=(double)sum*num[j];
}
printf("%.1lf\n",ans);
}else
{
scanf("%d%d%d",&l,&r,&k);
int lca = get_lca(l,r);
if(ch[]=='A')
{
deala(las[l],k,dep[lca]);
deala(las[r],k,dep[lca]-);
}else
{
dealb(las[l],k,dep[lca]);
dealb(las[r],k,dep[lca]-);
}
}
}
return ;
}

NOIp模拟赛 西行妖下的更多相关文章

  1. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  2. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  3. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  4. 【noip模拟赛5】细菌 状压dp

    [noip模拟赛5]细菌   描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...

  5. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  6. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  7. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  8. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

  9. 2016-06-19 NOIP模拟赛

          2016-06-19 NOIP模拟赛 by coolyangzc 共3道题目,时间3小时 题目名 高级打字机 不等数列 经营与开发 源文件 type.cpp/c/pas num.cpp/c ...

随机推荐

  1. 使用java发送HTTP请求

    public class Test { public static void main(String[] args) { BufferedReader in = null; String result ...

  2. 重启fpm

    ps aux | grep php-fpm cat /etc/php-fpm.conf kill -USR2 `cat /run/php-fpm/php-fpm.pid

  3. 从零开始通过idea插件将一个spring boot项目部署到docker容器里运行

    实操:将一个spring boot项目部署到docker容器里运行 实验需要的环境: 腾讯云+Ubuntu 16.04 x64+idea+插件docker integration+daocloud 第 ...

  4. 洛谷 P3368 【模板】树状数组 2(区间修改点查询)

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  5. C++中的显式构造函数

    有如下一个简单的复数类: class ClxComplex { public: ClxComplex(double dReal = 0.0, double dImage = 0.0) { m_dRea ...

  6. 《linux就该这么学》学习笔记

    本篇文章是根据刘遄老师的<linux就该这么学>中个人易忘知识点的读书笔记,结合的是个人弱点,可能不适合广大的网友同学,并在此声明本篇文章只是用于学习之用,绝无侵犯版权之意 linux就该 ...

  7. 题解报告:NYOJ #311完全背包(恰好装满)

    描述: 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题 ...

  8. ORACLE 如何查看存储过程的定义

    ORACLE 如何查看存储过程的定义   相关的数据字典 USER_SOURCE 用户的存储过程.函数的源代码字典 DBA_SOURCE 整个系统所有用户的存储过程.函数的源代码字典 ALL_SOUR ...

  9. 微服务熔断限流Hystrix之Dashboard

    简介 Hystrix Dashboard是一款针对Hystrix进行实时监控的工具,通过Hystrix Dashboard可以直观地看到各Hystrix Command的请求响应时间,请求成功率等数据 ...

  10. AJPFX总结正则表达式的概述和简单使用

    正则表达式的概述和简单使用* A:正则表达式        * 是指一个用来描述或者匹配一系列符合某个语法规则的字符串的单个字符串.其实就是一种规则.有自己特殊的应用.        * 作用:比如注 ...