POJ 1849 Two(遍历树)
POJ 1849 Two(遍历树)
http://poj.org/problem?id=1849
题意:
有一颗n个结点的带权的无向树, 在s结点放两个机器人, 这两个机器人会把树的每条边都走一遍, 可是最后机器人不要求回到出发点. 问你两个机器人走的路总长之和的最小值是多少?
分析:
首先本题仅仅要求出树的直径, 然后用树的总长sum*2-树的直径就是所求结果.
以下一步步来说明为什么是这种.
1.如果仅仅有1个机器人遍历树,且要求回到原点,
它最少须要走多少路?
答: 它须要走树总长sum的两倍, 即每条树边它都要走两次才行. 这个结论画个图就明确了, 对于每条边, 机器人要走过该边, 之后还要从该边回去(不回来就不能回到出发点了). 所以自然是sum*2.
2.如果1问中的机器人遍历树,可是不要求它回到原点,
那么它最少须要走多少路?
答: 最少须要走sum-[从出发点能走到最远的点的距离]. 在行走的过程中每一个分叉, 它走过去,又走回来就可以. 能够反证得出.
3.如果有两个机器人从s出发,遍历整个树且终于回到出发点.
它们行走的最短距离是?
答: 树总长的两倍. 每一个机器人都必须回到原点, 那么必定每条边至少要被走两次.
4.如果有两个机器人从s出发,遍历整个树且它们不须要回到出发点.
它们行走的最短距离是?
答: 树总长的两倍-树的直径. 机器人出去不回来,则所走路径中有一条简单路径是能够仅仅走一遍的,派出了两个点去遍历,也就是说有两条简单路径是能够直走一边的,我们要使这两条简单路径的总和尽可能的长,就转换为了树的最长路径问题了.
注意:上面第4种情况, 两个机器人从哪点出发都是没有不论什么差别的. 由于假设它们出发点不在树的直径上, 那么它们一定能够一起移动到树直径上的某个点上,然后分别朝树直径的两个方向走, 而且遍历它们走的树直径的全部分叉路两次.
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=100000+5; //边结构
struct Edge
{
Edge(){}
Edge(int to,int cost,int next):to(to),cost(cost),next(next){}
int to;
int cost;
int next;
}edges[maxn];
int cnt=0;//总边数
int head[maxn]; //加入两条有向边
void AddEdge(int u,int v,int cost)
{
edges[cnt]=Edge(v,cost,head[u]);
head[u]=cnt++;
edges[cnt]=Edge(u,cost,head[v]);
head[v]=cnt++;
} int dist[maxn]; //返回从s能到达的最长点编号
int BFS(int s)
{
int max_dist=0;
int id=s;
queue<int> Q;
memset(dist,-1,sizeof(dist));
dist[s]=0;
Q.push(s); while(!Q.empty())
{
int u=Q.front(); Q.pop();
if(dist[u]>max_dist)
max_dist=dist[id=u]; for(int i=head[u]; i!=-1; i=edges[i].next)
{
Edge &e=edges[i];
if(dist[e.to]==-1)
{
dist[e.to]=dist[u]+e.cost;
Q.push(e.to);
}
}
}
return id;
} int main()
{
int n,s;
while(scanf("%d%d",&n,&s)==2)
{
int sum=0;//树的总长
memset(head,-1,sizeof(head));
cnt=0;
for(int i=1;i<=n-1;i++)
{
int u,v,cost;
scanf("%d%d%d",&u,&v,&cost);
sum+=cost;
AddEdge(u,v,cost);
} printf("%d\n",sum*2-dist[BFS(BFS(s))]);
}
return 0;
}
POJ 1849 Two(遍历树)的更多相关文章
- POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)
树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...
- lintcode :前序遍历和中序遍历树构造二叉树
解题 前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: 2 / \ 1 3 注意 你可以假设树中不存 ...
- lintcode: 中序遍历和后序遍历树构造二叉树
题目 中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: 2 / \ 1 3 注意 你可 ...
- java遍历树(深度遍历和广度遍历
java遍历树如现有以下一颗树:A B B1 B11 B2 B22 C C ...
- poj 1849 Two
/*poj 1849 two 思考一下会发现 就是求直径 直径上的中点就是两个人分开的地方(不再有交集)*/ #include<cstdio> #define maxn 100010 us ...
- POJ 2155 D区段树
POJ 2155 D区段树 思考:D区段树是每个节点设置一个段树树. 刚開始由于题目是求A[I,J],然后在y查询那直接ans^=Map[i][j]的时候没看懂.后面自己把图画出来了才理解. 由于仅 ...
- POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)
POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...
- LintCode-72.中序遍历和后序遍历树构造二叉树
中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 注意事项 你可以假设树中不存在相同数值的节点 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: ...
- LintCode-73.前序遍历和中序遍历树构造二叉树
前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 注意事项 你可以假设树中不存在相同数值的节点 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: ...
随机推荐
- 迅为八核cortex a53开发板android/linux/Ubuntu系统
详情请点击了解:http://www.topeetobard.com 店铺:https://arm-board.taobao.com 核心板: 提供1G和2G内存版本,全机器焊接,杜绝手工,批量无忧. ...
- Android(java)学习笔记201:JNI之helloword案例(利用NDK工具)
1. 逻辑思路过程图: 2.下面通过一个HelloWorld案例来说明一下JNI利用NDK开发过程(步骤) 分析:我们在Win7系统下编译的C语言代码,我们知道C语言依赖操作系统,不能跨平台,所以我们 ...
- 关于nested exception is org.apache.ibatis.binding.BindingException:Parameter '***' not found报错解决
几天晚上遇到的奇怪的问题 传入的参数名一直没有变 但是从mapper到xml似乎有一个找不到参数的报错,实际上只要在Mapper接口形参前加“@Param(“形参名称”)”就可以了
- PLSQL连接Oracle 报错ORA-12154:TNS:无法解析指定的连接标识符
原因是图中第三行数据库应该填ip地址,我填了数据库名! 之前不懂原理,现来填坑,并不是应该填ip,而是填tnsname.ora中配置的名字(红框部分)
- 计算机网络概述下(OSI模型)
1. 用什么作为计算机网络的性能的指标? 1. 速率:即数据率或称数据传输速率或者比特率.(计算机网络的最重要的一个性能指标) 单位时间(秒)传输的信息(比特)量.单位:b/s(bps),kb/s,M ...
- [Python3网络爬虫开发实战] 1.5.3-redis-py的安装
对于Redis来说,我们要使用redis-py库来与其交互,这里就来介绍一下它的安装方法. 1. 相关链接 GitHub:https://github.com/andymccurdy/redis-py ...
- Django的admin源码浅析和模仿
admin模块: admin提供了5种接口 list_display, 指定数据展示字段,不能放多对多字段
- 97-2016年11月1日AUDUSD在公布利率后反手做单感悟(2016.11.2)
2016年11月1日AUDUSD在公布利率后反手做单感悟 11月1日,澳联储公布利率决议,保持利率不变,AUDUSD大涨.我在上面做空认为市场会回调.做空位置是根据多种斐波那契技术找的 ...
- POJ3641 (快速幂) 判断a^p = a (mod p)是否成立
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...
- JSONArray 遍历方式
第一种(java8):遍历JSONArray 拼接字符串 public static void main(String[] args) { JSONArray jSONArray = new JSON ...